Skip to main content
Log in

Design of a Frequency Reconfigurable Broadband THz Antenna Based on the Vanadium Dioxide

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this article, the design of a frequency reconfigurable broadband THz antenna based on vanadium dioxide (VO2) is investigated. Instead of being fed by the microstrip line directly, a windmill-shaped feeding structure is designed to provide a proximity-coupled feeding method. Many modes with contiguous resonant frequencies can be excited to obtain the wideband performance. The proposed antenna combines gold with metamaterial VO2. Thanks to insulator-metal phase transition characteristic of VO2 at phase transition temperature (68 °C), we can change the length of the resonant branches to realize frequency reconfiguration by changing the external temperature (T). The simulated results illustrate that when T = 50 °C (State I), such an antenna has a bandwidth of 35.2% (7.01–10 THz) with S11 below − 10 dB, and a maximum gain of 6.62 dBic. When T = 80 °C (State II), it has a bandwidth of 21.8% (5.77–7.18 THz) with S11 below − 10 dB, and a maximum gain of 4.49 dBic. Thus, we realize a design of a proximity-coupled antenna with reconfigurable wideband over the THz band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dragoman M, Muller AA, Dragoman D, Coccetti F, Plana R (2010) Terahertz antenna based on graphene. J Appl Phys 107:104313

    Article  Google Scholar 

  2. Kleine-Ostmann T, Nagatsuma T (2011) A review on terahertz communications research. J Infrared Millim Terahertz Waves 32:143–171

    Article  Google Scholar 

  3. George JN, Madhan MG (2017) Analysis of single band and dual band graphene-based patch antenna for terahertz region. Phys E 94:126–131

    Article  CAS  Google Scholar 

  4. Haupt RL, Lanagan M (2013) Reconfigurable antennas. IEEE Antenn Propag M 55:49–61

    Article  Google Scholar 

  5. Costantine J, Tawk Y, Barbin SE, Christodoulou CG (2015) Reconfigurable antennas: design and applications. Proc IEEE 103:424–437

    Article  Google Scholar 

  6. Christodoulou CG, Tawk Y, Lane SA (2012) Reconfigurable antennas for wireless and space applications. Proc IEEE 100:2250–2261

    Article  Google Scholar 

  7. Huang Y, Wu LS, Tang M, Mao J (2012) Design of a beam reconfigurable THz antenna with graphene-based switchable high-impedance surface. IEEE Transac Nanotechnol 11:836–842

    Article  Google Scholar 

  8. Tamagnone M, Gomez-Diaz JS, Mosig JR, Perruisseau-Carrier J (2012) Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl Phys Lett 101:214102

    Article  Google Scholar 

  9. Kyoung JS, Seo MA, Koo SM et al (2011) Active terahertz metamaterials: nano-slot antennas on VO2 thin films. Phys Status Solidi C 8:1227–1230

    Article  CAS  Google Scholar 

  10. Jeong YG, Bernien H, Kyoung JS, Park HR, Kim HS, Choi JW, Kim BJ, Kim HT, Ahn KJ, Kim DS (2011) Electrical control of terahertz nano antennas on VO2 thin film. Opt Express 19:21211–21215

    Article  CAS  Google Scholar 

  11. Li W, Chang SJ, Wang XH, Lin L, Bai JJ (2014) A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film. Optoelectron Lett 10:180–183

    Article  CAS  Google Scholar 

  12. Zylbersztejn A, Mott NF (1975) Metal-insulator transition in vanadium dioxide. Phys Rev B 11:4383–4395

    Article  CAS  Google Scholar 

  13. Chain EE (1991) Optical properties of vanadium dioxide and vanadium pentoxide thin films. Appl Opt 30:2782–2787

    Article  CAS  Google Scholar 

  14. Seo M, Kyoung J, Park H, Koo S, Kim HS, Bernien H, Kim BJ, Choe JH, Ahn YH, Kim HT, Park N, Park QH, Ahn K, Kim DS (2010) Active terahertz nanoantennas based on VO2 phase transition. Nano Lett 10:2064–2068

    Article  CAS  Google Scholar 

  15. Kats MA, Blanchard R, Genevet P, Yang Z, Qazilbash MM, Basov DN, Ramanathan S, Capasso F (2013) Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett 38:368–370

    Article  CAS  Google Scholar 

  16. Liang J, Song X, Li J et al (2017) A visible-near infrared wavelength-tunable metamaterial absorber based on the structure of Au triangle arrays embedded in VO2 thin film. J Alloys Compd 708:999–1007

    Article  CAS  Google Scholar 

  17. Kocer H, Butun S, Banar B et al (2015) Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl Phys Lett 106:161104

    Article  Google Scholar 

  18. Tran HH, Le TT, Bui CD, Nguyen TK (2018) Broadband circularly polarized Fabry-Perot antenna utilizing Archimedean spiral radiator and multi-layer partially reflecting surface. Int J RF Microw Comp-Aided Eng 29:e21647

    Article  Google Scholar 

  19. Varshney G, Verma A, Pandey VS, Yaduvanshi RS, Bala R (2018) A proximity coupled wideband graphene antenna with the generation of higher order TM modes for THz applications. Opt Mater 85:456–463

    Article  CAS  Google Scholar 

  20. Thampy AS, Darak MS, Dhamodharan SK (2015) Analysis of graphene based optically transparent patch antenna for terahertz communications. Physica E 66:67–73

    Article  CAS  Google Scholar 

  21. Kazemi AH, Mokhtari A (2017) Graphene-based patch antenna tunable in the three atmospheric windows. Optik 142:475–482

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No. K201927), and Jiangsu Overseas Visiting Scholar Program for the University prominent Young & Middle-aged Teachers and Presidents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Feng Zhang or Guo-Biao Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HF., Liu, GB., Huang, T. et al. Design of a Frequency Reconfigurable Broadband THz Antenna Based on the Vanadium Dioxide. Plasmonics 15, 1035–1041 (2020). https://doi.org/10.1007/s11468-020-01129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01129-3

Keywords

Navigation