Skip to main content
Log in

Optical Properties of Au-Doped Titanium Nitride Nanostructures: a Connection Between Density Functional Theory and Finite-Difference Time-Domain Method

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we present a computational method to investigate optical properties of materials using a combination of density functional theory (DFT) calculations and finite-difference time-domain (FDTD) method. We show our method in the framework of an example for analyzing the effect of Au doping on optical transmission behavior of TiN compounds with a given geometry. First, DFT is employed based on generalized gradient approximation (GGA) exchange-correlation potential to investigate the electronic properties as well as dielectric function of TiN with respect to different percentages of doped Au. Our results reveal a growth in the imaginary part of dielectric function for energies below 4 eV by increasing Au doping level due to compression of Ti1−xAuxN DOS into the Fermi energy. In order to clarify the impact of Au doping on the optical behavior of Ti1−xAuxN with a given geometry, the optical dielectric function calculated from DFT was used as an input data for FDTD method to simulate a perforated surface plasmon system originated from Ti1−xAuxN-dielectric configuration via Optiwave package. It is observed that an increase in the Au level decreases the transmission intensity of excited modes of the perforated surface plasmon system, which is in agreement with the observed behavior for the imaginary part of dielectric function from DFT calculations. This implies that an enhanced imaginary part of dielectric function leads to more energy dissipation and finally less transmitted wave. The proposed method enables us to simulate optical properties of a wide range of compounds with arbitrary geometries and material-specific properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park TY, Choi YS, Kang JW, Jeong JH, Park SJ, Jeon DM, Kim JW, Kim YC (2010) Enhanced optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer. Appl Phys Lett 96:051124

    Article  Google Scholar 

  2. Xi JQ, Schubert MF, Kim JK, Schubert EF, Chen M, Lin SY, Liu W, Smart JA (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photonics 1:176–179

    Article  CAS  Google Scholar 

  3. Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CH, Chang YH, Lee CS (2007) Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat Nanotechnol 2:770–774

    Article  CAS  Google Scholar 

  4. Singh P, Sharma P, Sharma V, Thakur A (2017) Linear and non-linear optical properties of Ag-doped Ge2Sb2Te5 thin films estimated by single transmission spectra. Semicond Sci Technol 32:045015

    Article  Google Scholar 

  5. Tang B, Li Z, Liu Z, Callewaert F, Aydin K (2016) Broadband asymmetric light transmission through tapered metallic gratings at visible frequencies. Sci Rep 6:39166

    Article  CAS  Google Scholar 

  6. Lehr D, Reinhold J, Thiele I, Hartung H, Dietrich K, Menzel C, Pertsch T, Kley E, Tünnermann A (2015) Enhancing second harmonic generation in gold nanoring resonators filled with lithium niobate. Nano Lett 15:1025–1030

    Article  CAS  Google Scholar 

  7. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tenability. Nano Lett 10:3184–3189

    Article  CAS  Google Scholar 

  8. Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett 7:3249–3252

    Article  CAS  Google Scholar 

  9. Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77:075401

    Article  Google Scholar 

  10. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348

    Article  CAS  Google Scholar 

  11. Huo D, Zhang J, Wang H, Ren X, Wang C, Su H, Zhao H (2017) Broadband perfect absorber with monolayer MoS2 and hexagonal titanium nitride nano-disk array. Nanoscale Res Lett 12(465)

  12. Recco A, Lopez D, Bevilacqua AF, da Silva F, Tschiptschin AP (2007) Improvement of the slurry erosion resistance of an austenitic stainless steel with combinations of surface treatments: nitriding and TiN coating. Surf Coat Technol 202:993–997

    Article  CAS  Google Scholar 

  13. Wittmer M, Studer B, Melchior H (1981) Electrical characteristics of TiN contacts to N silicon. J Appl Phys 52:5722–5726

    Article  CAS  Google Scholar 

  14. Patsalas P, Charitidis C, Logothetidis S, Dimitriadis CA, Valassiades O (1999) Combined electrical and mechanical properties of titanium nitride thin films as metallization materials. J Appl Phys 86:5296–5298

    Article  CAS  Google Scholar 

  15. Guler U, Shalaev VM, Boltasseva A (2015) Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today 18:227–237

    Article  CAS  Google Scholar 

  16. Guler U, Naik GV, Boltasseva A, Shalaev VM, Kildishev AV (2012) Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Appl Phys B Lasers Opt 107:285–291

    Article  CAS  Google Scholar 

  17. Cortie MB, Giddings J, Dowd A (2010) Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21:115201

    Article  CAS  Google Scholar 

  18. Kim J, Jhi SH, Lee Ryeol K (2011) Color of TiN and ZrN from first-principles calculations. J Appl Phys 110:083501

    Article  Google Scholar 

  19. Reinholdt A, Pecenka R, Pinchuk A, Runte S, Stepanov AL, Weirich TE, Kreibig U (2004) Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles. Eur Phys J D 31:69–76

    Article  CAS  Google Scholar 

  20. Lalisse A, Tessier G, Plain J, Baffou G (2016) Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold. Sci Rep 6:38647

    Article  CAS  Google Scholar 

  21. Matenoglou GM, Lekka CE, Koutsokeras LE, Karras G, Kosmidis C, Evangelakis GA, Patsalas P (2009) Structure and electronic properties of conducting, ternary TixTa1-xN films. J Appl Phys 105:103714

    Article  Google Scholar 

  22. Marlo M, Milman V (2000) Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functional. Phys Rev B 62:2899–2907

    Article  CAS  Google Scholar 

  23. Yang Y, Lu H, Yu C, Chen JM (2009) First-principles calculations of mechanical properties of TiC and TiN. J Alloys Compd 485:542–547

    Article  CAS  Google Scholar 

  24. Yu S, Zeng Q, Oganov AR, Frapper G, Zhang L (2015) Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study. Phys Chem Chem Phys 17:11763–11769

    Article  CAS  Google Scholar 

  25. Kim J, Jhi SH, Ryeol Lee K (2011) Color of TiN and ZrN from first-principles calculations. J Appl Phys 110:083501

    Article  Google Scholar 

  26. Catellani A, Calzolari A (2017) Plasmonic properties of refractory titanium nitride. Phys Rev B 95:115145

    Article  Google Scholar 

  27. Liu K, Fan H, Ren P, Yang C (2011) Structural, electronic and optical properties of BiFeO3 studied by first-principles. J Alloys Compd 509:1901–1905

    Article  CAS  Google Scholar 

  28. Shabani A, Rezaei Roknabadi M, Behdani M, Kazaei Nezhad M, Rahmani N (2017) Extraordinary optical transmission of periodic array of subwavelength holes within titanium nitride thin film. J Nanophotonics 11:036006

    Article  Google Scholar 

  29. Jin EX, Xu X (2006) Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture. Appl Phys B Lasers Opt 84:3–9

    Article  CAS  Google Scholar 

  30. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Shabani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabani, A., Nezhad, M.K., Rahmani, N. et al. Optical Properties of Au-Doped Titanium Nitride Nanostructures: a Connection Between Density Functional Theory and Finite-Difference Time-Domain Method. Plasmonics 14, 1871–1879 (2019). https://doi.org/10.1007/s11468-019-00982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00982-1

Keywords

Navigation