Skip to main content
Log in

Plasmon-Induced Transparency and Refractive Index Sensing Based on a Trapezoid Cavity Coupled with a Hexagonal Resonator

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tunable plasmon-induced transparency (PIT) effect is studied in a plasmonic device on the basis of the metal-insulator-metal (MIM) structure which consists of trapezoid and hexagonal cavities. The transmission characteristics are numerically studied in detail by the finite element method (FEM). Diverse geometrical parameters were altered to evaluate the characteristics of the structure, and the coupled mode theory (CMT) is utilized to verify the simulation results. The sensing characteristics of the device could also be analyzed by the simulative results which achieved from the transmission spectra. The structure we proposed has the capacity and potential to be utilized on integrated optical circuit field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Wang F, Shen Y (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97:206806

    Article  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  4. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  5. Neutens P, Van Dorpe P, De Vlaminck I et al (2009) Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat Photonics 3:283–286

    Article  CAS  Google Scholar 

  6. Gramotnev D, Bozhevolnyi S (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91

    Article  CAS  Google Scholar 

  7. Liu D, Fan Q, Mei M et al (2016) Tunable multiple plasmon-induced transparency with side-coupled rectangle cavities. Chin Opt Lett 14:88–91

    Google Scholar 

  8. Song C, Qu S, Wang J, Tang B, Xia X, Liang X, Lu Y (2015) Plasmonic tunable filter based on trapezoid resonator waveguide. J Mod Opt 62:1400–1404

    Article  CAS  Google Scholar 

  9. Tao J, Wang Q, Huang X (2011) All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material. Plasmonics 6:753–759

    Article  Google Scholar 

  10. Liu H, Ren G, Gao Y, Zhu B, Li H, Wu B, Jian S (2015) Ultrafast and low-power all-optical switch based on asymmetry electromagnetically induced transparency in MIM waveguide containing Kerr material. Opt Commun 353:189–194

    Article  CAS  Google Scholar 

  11. Liu H, Gao Y, Zhu B, Ren G, Jian S (2015) A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators. Opt Commun 334:164–169

    Article  CAS  Google Scholar 

  12. Zhao T, Yu S (2018) Ultra-high sensitiviny Nanosensor based on multiple Fano resonance in the MIM coupled plasmonic resonator. Plasmonics 13:1115–1120

    Article  CAS  Google Scholar 

  13. Lu H, Liu X, Mao D, Wang G (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37:3780–3782

    Article  Google Scholar 

  14. Wu T, Ye H, Yu Z et al (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7669–7677

    Article  CAS  Google Scholar 

  15. Jin X, Huang X, Tao J et al (2010) A novel nanometeric plasmonic refractive index sensor. IEEE Trans Nanotechnol 9:134–137

    Article  Google Scholar 

  16. He J, Yang S (2016) Line shapes in a plasmonic waveguide system based on plasmon-induced transparency and its application in nanosensor. Opt Commun 381:163–168

    Article  CAS  Google Scholar 

  17. Zhang Z, Zhang L, Li H, Chen H (2014) Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity. Appl Phys Lett 104:231114

    Article  Google Scholar 

  18. Wang J, Niu Y, Liu D, Hu ZD, Sang T, Gao S (2018) Tunable plasmon-induced transparency effect in MIM side-coupled isosceles trapezoid cavities system. Plasmonics 13:609–616

    Article  Google Scholar 

  19. Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia RA (2013) Plasmon-induced transparency in the visible region via selfassembled gold nanorod heterodimers. Nano Lett 13:6287–6291

    Article  CAS  Google Scholar 

  20. Zhang S, Genov D, Wang Y et al (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  21. He Z, Li H, Zhan S, Cao G, Li B (2014) Combined theoretical analysis for plasmon-induced transparency in waveguide systems. Opt Lett 39:5543–5546

    Article  Google Scholar 

  22. Zhan S, Li H, He Z, Li B, Chen Z, Xu H (2015) Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide. Opt Express 23:20313–20320

    Article  CAS  Google Scholar 

  23. Zheng P, Yang H, Jiao L, Fan M, Yun B, Cui Y (2017) Plasmonic induced transparency in a coupled system composed of metal-insulate-metal stub and trapezoid cavity resonator. Opt Commun 396:199–205

    Article  CAS  Google Scholar 

  24. Ren G, Liu H, Jian S et al (2015) Tunable subwavelength terahertz plasmon-induced transparency in the InSb slot waveguide side-coupled with two stub resonators. Appl Opt 54:3918–3924

    Article  Google Scholar 

  25. Li X, Wei Z, Liu Y, Zhong N, Tan X, Shi S, Liu H, Liang R (2016) Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. Phys Lett A 380:232–237

    Article  CAS  Google Scholar 

  26. Liu D, Sun Y, Fan Q, Mei M, Wang J, Pan YW, Lu J (2016) Tunable plasmonically induced transparency with asymmetric multi-rectangle resonators. Plasmonics 11:1621–1628

    Article  CAS  Google Scholar 

  27. Xie Y, Huang Y, Zhao W et al (2015) A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity. IEEE Photon J 7:4800612

    Google Scholar 

  28. Han Z, Bozhevlnyi S (2011) Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt Express 19:3251–3257

    Article  CAS  Google Scholar 

  29. Tang B, Wang J, Xia X, Liang X, Song C, Qu S (2015) Plasmonic-induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators. Appl Phys Express 8:032202

    Article  CAS  Google Scholar 

  30. Roh S, Chung T, Lee B (2011) Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 11:1565–1588

    Article  Google Scholar 

  31. Chen Y, Ming H (2012) Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors 2:37–49

    Article  Google Scholar 

  32. Tong L, Wei H, Zhang S, Xu H (2014) Recent advances in plasmonic sensors. Sensors 14:7959–7973

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11504139 and 11811530052), the Natural Science Foundation of Jiangsu Province (Nos. BK20140167 and BK20170247), the China Postdoctoral Science Foundation (Nos. 2017M611693 and 2018T110440), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 16KJB140016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongdong Liu or Jicheng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Fu, W., Shao, J. et al. Plasmon-Induced Transparency and Refractive Index Sensing Based on a Trapezoid Cavity Coupled with a Hexagonal Resonator. Plasmonics 14, 663–671 (2019). https://doi.org/10.1007/s11468-018-0844-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0844-x

Keywords

Navigation