Skip to main content

Advertisement

Log in

Multilayer Hybrid Plasmonic Nano Patch Antenna

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This is the first report of a hybrid plasmonic nano patch antenna having metal insulator metal (HMIM) multilayer configuration. It is designed in a footprint area of 1.7 × 1.175 μm2 to resonate at 1.55 μm wavelength. The proposed antenna is inset fed by an HMIM plasmonic waveguide for achieving proper impedance matching. It is observed, through electromagnetic numerical simulation, that the proposed plasmonic nano patch antenna emits a directional beam with a bandwidth, gain, and efficiency of 0.194 μm, 8.3 dB, and 96% respectively, which are significantly higher than previously reported designs. Since inset-fed antennas are suitable for developing high-gain antenna array, hence further, we examined antenna performance by designing antenna array. The proposed antenna is practically realizable and can be fabricated using standard semiconductor fabrication process. Moreover, it could be used for numerous chip scale applications such as wireless interconnects energy harvesting, photoemission, photo detection, scattering, heat transfer, spectroscopy, and optical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Saad-Bin-Alam M, Khalil MI, Rahman A, Chowdhury AM (2015) Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications. IEEE Photon Technol Lett 27:1092–1095. https://doi.org/10.1109/LPT.2015.2407867

    Article  Google Scholar 

  2. Yousefi L (2014) Highly directive hybrid plasmonic leaky wave optical nano-antenna. Progress In Electromagnetics Research Letters 50:85–90. https://doi.org/10.2528/PIERL14110405

    Article  Google Scholar 

  3. Yousefi L, Foster AC (2012) Waveguide-fed optical hybrid plasmonic patch nano-antenna. Opt Express 20:18326–18335. https://doi.org/10.1364/OE.20.018326

    Article  PubMed  Google Scholar 

  4. Kashyap N, Wani ZA, Jain R, Khusboo, Dinesh Kumar V (2014) Investigation of a nanostrip patch antenna in optical frequencies. Appl Phys A Mater Sci Process 117:725–729. https://doi.org/10.1007/s00339-014-8730-7

    Article  CAS  Google Scholar 

  5. Cubukcu E, Kort EA, Crozier KB, Capasso F (2006) Plasmonic laser antenna. Appl Phys Lett 89:093120–093123. https://doi.org/10.1063/1.2339286

    Article  CAS  Google Scholar 

  6. Brongersma ML (2008) Plasmonics: engineering optical nanoantennas. Nat Photonics 2:270–272. https://doi.org/10.1038/nphoton.2008.60

    Article  CAS  Google Scholar 

  7. Bakker RM, Yuan H-K, Lui Z, Drachev V, Kildishev AV, Shalaev VM, Pederson RH, Gresillon S, Boltasseva A (2008) Enhanced localized fluorescence in plasmonic nanoantennae. Appl Phys Lett 92:043101–043103. https://doi.org/10.1063/1.2836271

    Article  CAS  Google Scholar 

  8. Silveira GNM, Wiederhecker GS, Figueroa HEH (2013) Dielectric resonator antenna for applications in nanophotonics. Opt Express 21:1234–1239. https://doi.org/10.1364/OE.21.001234

    Article  CAS  Google Scholar 

  9. Dregely D, Taubert R, Dorfmuller J, Vogelgesang R, Kern K, Giessen H (2011) 3D optical Yagi-Uda nanoantenna array. Nat Commun 2:10.1038. https://doi.org/10.1038/ncomms1268

    Article  CAS  Google Scholar 

  10. Singh R, Rockstuhl C, Menzel C, Meyrath TP, He M, Giessen H, Lederer F, Zhang W (2009) Spiral-type terahertz antennas and the manifestation of the Mushiake principle. Opt Express 17:9971–9980. https://doi.org/10.1364/OE.17.009971

    Article  PubMed  Google Scholar 

  11. Pan Z, Guo J (2013) Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas. Opt Express 21:32491–32500. https://doi.org/10.1364/OE.21.032491

    Article  PubMed  Google Scholar 

  12. Grosjean T, Mivelle M, Burr GW, Baida FI (2013) Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber. Opt Express 21:1762–1772. https://doi.org/10.1364/OE.21.001762

    Article  CAS  PubMed  Google Scholar 

  13. Ramaccia D, Bilotti F, Toscano A, Massaro A (2011) Efficient and wideband horn nanoantenna. Opt Lett 36:1743–1745. https://doi.org/10.1364/OL.36.001743

    Article  CAS  PubMed  Google Scholar 

  14. Ooi KJA, Bai P, Gu MX, Ang LK (2011) Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Opt Express 19:17075–17085. https://doi.org/10.1364/OE.19.017075

    Article  CAS  PubMed  Google Scholar 

  15. Sharma P, Kumar VD (2016) Investigation of multilayer planar hybrid plasmonic waveguide and bends. Electronics Letters (IET) 52:732–734. https://doi.org/10.1049/el.2015.3827

    Article  CAS  Google Scholar 

  16. Sharma P, Kumar VD (2018) All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photon Technol Lett 30:959–962. https://doi.org/10.1109/LPT.2018.2826051

    Article  CAS  Google Scholar 

  17. Sharma P, Kumar VD (2017) Hybrid insulator metal insulator planar plasmonic waveguide based components. IEEE Photon Technol Lett 29:1360–1363. https://doi.org/10.1109/LPT.2017.2722827

    Article  CAS  Google Scholar 

  18. Maier SA (2007) Surface plasmon Polariton at metal/insulator interfaces. In: Plasmonics: Fundamentals and applications. Springer Science, New York chap 2, sec 2.2, pp. 25–28

    Chapter  Google Scholar 

  19. Z. Zhang (2008) Silicon based photonic devices: design, fabrication and characterization. Ph.D thesis, KTH, Sweden

  20. Miyazaki HT (2006) Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. PRL 96:097401. https://doi.org/10.1103/PhysRevLett.96.097401

    Article  CAS  Google Scholar 

  21. Constantine A. Balanis (2005) Antenna theory analysis and design. 3rd edition Chapter 14 A John Wiley & Sons, Inc., Publication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateeksha Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Dinesh Kumar, V. Multilayer Hybrid Plasmonic Nano Patch Antenna. Plasmonics 14, 435–440 (2019). https://doi.org/10.1007/s11468-018-0821-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0821-4

Keywords

Navigation