Skip to main content
Log in

Multi-Band Plasmonic Platform Utilizing UT-Shaped Graphene Antenna Arrays

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this work, we introduce a plasmonic platform based on UT-shaped graphene antenna arrays. The proposed multi-resonant platform shows three different resonances, which can be independently tuned. The physical origin of these modes is shown with finite-difference time-domain (FDTD) nearfield distribution analyses, which are used to statically tune each resonance wavelength via the geometrical parameters, corresponding to different nearfield localization. We achieve statistical tuning of multiple resonances also by changing the number of graphene layers. Another static tuning of the optical response of the UT-shaped graphene antenna is achieved via the chemical potential and the relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stern EA, Ferrell RA (1960) Surface plasma oscillations of a degenerate electron gas. Phys Rev 120:130–136

    Article  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  3. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  4. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Field MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  5. Kundu J, Le F, Nordlander P, Halas NJ (2008) Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem Phys Lett 452:115–119

    Article  CAS  Google Scholar 

  6. Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramili S, Altug H (2009) Ultra-sensitive vibrational spectroscopy of proteinmonolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci U S A 106:19227–19232

    Article  CAS  Google Scholar 

  7. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    Article  CAS  Google Scholar 

  8. Artar A, Yanik AA, Altug H (2009) Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl Phys Lett 95:051105

    Article  Google Scholar 

  9. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  10. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Article  CAS  Google Scholar 

  11. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  Google Scholar 

  12. Garcia de Abajo FJ (2014) Graphene plasmonics: challenges and opportunities. ACS Photon 1:35–152

    Article  Google Scholar 

  13. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  14. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Article  CAS  Google Scholar 

  15. Song J, Zhang L, Xue Y, Yang Q, Wu S, Xia F, Zhang C, Zhong YL, Zhang Y, Teng J, Premaratne M, Qiu CW, Bao Q (2016) Efficient excitation of multiple plasmonic modes on three-dimensional graphene: an unexplored dimension. ACS Photonics 3:1986–1992

    Article  CAS  Google Scholar 

  16. Liu PQ, Valmorra F, Maissen C, Faist J (2015) Electrically tunable graphene anti-dot array terahertz plasmonic crystals exhibiting multi-band resonances. Optica 2:135–140

    Article  CAS  Google Scholar 

  17. Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  Google Scholar 

  18. Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan PM, Kono J, Xu Q (2013) Excitation and active control of propagating surface plasmon polaritons in graphene. Nano Lett 13:3698–3702

    Article  CAS  Google Scholar 

  19. Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394–399

    Article  CAS  Google Scholar 

  20. Gao W, Shu J, Qiu C, Xu Q (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6:7806–7813

    Article  CAS  Google Scholar 

  21. Nene P, Strait J, Chan WM, Manolatou C, Kevek JW, Tiwari S, McEuen PL, Rana F (2013) Graphene micro- and nano-plasmonics. QTh1B.2 CLEO:2013 OSA

  22. Li HJ, Zhai X, Sun B, Huang ZR, Wang LL (2015) A graphene-based bandwidth-tunable mid-infrared ultra-broadband plasmonic filter. Plasmonics 10:765–771

    Article  CAS  Google Scholar 

  23. Said FA, Menon PS, Nawi MN, Md Zain AR, Jalar A, Majlis BY (2016) Copper-graphene SPR-based biosensor for urea detection. IEEE-ICSE Proc. doi:10.1109/SMELEC.2016.7573642

  24. Lee JK, Kim H (2016) Mid-infrared plasmonic tuning via nanogap control in periodic multilayer graphene nanoribbons. Opt Mater 54:22–25

    Article  Google Scholar 

  25. Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nature NanoTech 4:839–843

    Article  CAS  Google Scholar 

  26. Freitag M, Low T, Zhu W, Yan H, Xia F, Avouris P (2013) Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat Commun 4:1951

    Article  Google Scholar 

  27. Cai X, Sushkov AB, Jadidi MM, Nyakiti LO, Myers-Ward RL, Gaskill DK, Murphy TE, Fuhrer MS, Drew HD (2015) Plasmon-enhanced terahertz photodetection in graphene. Nano Lett 15:4295–4302

    Article  CAS  Google Scholar 

  28. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    Article  CAS  Google Scholar 

  29. Sensale-Rodriguez B, Yan R, Zhu M, Jena D, Liu L, Xing HG (2012) Efficient terahertz electro-absorption modulation employing graphene plasmonic structures. Appl Phys Lett 101:261115

    Article  Google Scholar 

  30. Otsuji T, Popov V, Ryzhii V (2014) Active graphene plasmonics for terahertz device applications. J Phys D Appl Phys 47:094006

    Article  Google Scholar 

  31. Brar VW, Sherrott MC, Jang MS, Kim S, Kim L, Choi M, Sweatlock LA, Atwater HA (2015) Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat Commun 6:7032

    Article  CAS  Google Scholar 

  32. Wang X, Zhi L, Mullen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Article  CAS  Google Scholar 

  33. Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Sci Rep 349:165–168

    CAS  Google Scholar 

  34. Zhao Y, Hu X, Guanxiong C, Xuanru Z, Ziqi T, Junhua C, Rodney SR, Yanwu Z, Yalin L (2013) Infrared biosensors based on graphene plasmonics: modeling. Physical Chemistry Chem Phys 15:17118–17125

    Article  CAS  Google Scholar 

  35. Falkovsky L, Pershoguba S (2007) Optical far-infrared properties of a graphene monolayer and multilayer. Phys Rev B 76:1–4

    Article  Google Scholar 

  36. Hanson GW (2008) Dyadic Green’s functions for an anisotropic, nonlocal model of biased graphene. IEEE Trans Antennas Propag 56:747–757

    Article  Google Scholar 

  37. Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129:012004

    Article  Google Scholar 

  38. Gan CH, Chu HS, Li EP (2012) Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid infrared and terahertz frequencies. Phys Rev B 85:125431

    Article  Google Scholar 

  39. Ke S, Wang B, Huang H, Long H, Wang K, Lu P (2015) Plasmonic absorption enhancement in periodic cross-shaped graphene arrays. Opt Express 23:8888–8900

    Article  CAS  Google Scholar 

  40. Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435

    Article  Google Scholar 

  41. Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8:318

    Article  Google Scholar 

  42. Hwang EH, S DS (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75: 205418

  43. Koppens FH, Chang DE, de Abajo FJG (2011) Graphene plasmonics: a platform for strong light matter interactions. Nano Lett 11:3370–3377

    Article  CAS  Google Scholar 

  44. Finite-difference-time-domain package, Lumerical FDTD Solutions (2014) [Online]. Available: www.lumerical.com

  45. Cetin AE, Turkmen M, Aksu S, Altug H (2012) Nanoparticle-based metamaterials as multiband Plasmonic resonator antennas. IEEE Trans Nano Technol 11:208–212

    Article  Google Scholar 

  46. Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98:266802

    Article  Google Scholar 

  47. Liberman V, Adato R, Jeys TH, Saar BG, Erramilli S, Altug H (2012) Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy. Opt Express 20:11953–11967

    Article  CAS  Google Scholar 

  48. Cubukcu E, Capasso F (2009) Optical nanorod antennas as dispersive one-dimensional Fabry–Pérot resonators for surface plasmons. Appl Phys Lett 95:201101

    Article  Google Scholar 

  49. Krasavin AV, Zayats AV (2008) Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides. Phys Rev B 78:045425

    Article  Google Scholar 

  50. Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405

    Article  Google Scholar 

  51. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18:14395–14400

    Article  CAS  Google Scholar 

  52. Chu HS, Choon HG (2013) Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett 102:231107

    Article  Google Scholar 

Download references

Acknowledgements

Yasa Ekşioğlu acknowledges the support of Istanbul Kemerburgaz University Scientific Research Foundation project No: PB2016-I-012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasa Ekşioğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekşioğlu, Y., Cetin, A.E. & Durmaz, H. Multi-Band Plasmonic Platform Utilizing UT-Shaped Graphene Antenna Arrays. Plasmonics 13, 1081–1088 (2018). https://doi.org/10.1007/s11468-017-0607-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0607-0

Keywords

Navigation