Skip to main content

Advertisement

Log in

Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, systematic study for asymmetric tapered dipole nanoantenna is implemented using finite element frequency domain (FEFD) solver where harvesting efficiency, field confinement, surface current, and input impedance are calculated at wavelength of 500 nm. The proposed nanoantennas achieve a harvesting efficiency of 61.3% and a field enhancement factor of 37.7 over the conventional dipole nanoantenna. This enhancement is attributed to the irregularity of the surface current distribution on the asymmetric designs. Particle swarm optimization technique is used to find the optimum design geometrical parameters through an external link between the optimization algorithm and the FEFD solver. Moreover, the proposed designs offer a resonance impedance of 500 Ω to match that of fabricated rectifiers. Further study of the structure fabrication tolerance is included which shows the robustness of the proposed nanoantennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mullen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photon 3(11):654–657

    Article  CAS  Google Scholar 

  2. Zarrabi FB, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand AS (2016) Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt Commun 371:34–39

    Article  CAS  Google Scholar 

  3. Ghanim AM, Hussein M, Hameed MFO, Yahia A, Obayya SSA (2016) Highly directive hybrid Yagi-Uda nanoantenna for radition emission enhancement. IEEE Photonics Journal 8(5):1–12

    Article  Google Scholar 

  4. Salah O, Nihal Fayez Fahmy A, Mohamed Farhat OH, Mohamed Hussein A (2015) Optical nano-antennas for energy harvesting. In: Luciano M, Onofrio L, Francesco P (eds) Innovative materials and systems for energy harvesting applications. IGI Global, Hershey, PA, USA, pp 26–62

    Google Scholar 

  5. Calderón J, Álvarez J, Martinez-Pastor J, Hill D (2015) Polarimetric plasmonic sensing with bowtie nanoantenna arrays. Plasmonics 10(3):703–711

    Article  Google Scholar 

  6. Ma Z, Vandenbosch GAE (2013) Optimal solar energy harvesting efficiency of nano-rectenna systems. Sol Energy 88:163–174

    Article  CAS  Google Scholar 

  7. Fischer H, Martin OJF (2008) Engineering the optical response of plasmonic nanoantennas. Opt Express 16(12):9144–9154

    Article  Google Scholar 

  8. Gadalla MN, Abdel-Rahman M, Shamim A (2014) Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Scientific Reports 4:4270

    Article  CAS  Google Scholar 

  9. Krishnan S (2004) Design, fabrication and characterization of thin-film MIM diodes for rectenna array. University of South Florida, Florida, USA

    Google Scholar 

  10. Feichtner T, Selig O, Kiunke M, Hecht B (2012) Evolutionary optimization of optical antennas. Phys Rev Lett 109(12):127701

    Article  Google Scholar 

  11. Chen J, Zhang Z (2014) Bowtie nanoantennas with symmetry breaking. NANOP 9(1):093798–093798

    Article  Google Scholar 

  12. Jin N, Rahmat-Samii Y (2005) Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans Antennas Propag 53(11):3459–3468

    Article  Google Scholar 

  13. El-Toukhy YM, Heikal AM, Hameed MFO, Abd-Elrazzak MM, Obayya SSA Optimization of nanoantenna for solar energy harvesting based on particle swarm technique. In: 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES), 13–18 March 2016 2016. pp 1–2.

  14. Kennedy J, Eberhart R Particle swarm optimization. In: Neural Networks, 1995. Proceedings, IEEE International Conference on, Nov/Dec 1995 1995. pp 1942–1948 vol. 1944.

  15. El-Toukhy YM, Hussein M, Hameed MFO, Heikal AM, Abd-Elrazzak MM, Obayya SSA (2016) Optimized tapered dipole nanoantenna as efficient energy harvester. Opt Express 24(14):A1107–A1122

    Article  Google Scholar 

  16. Hu W, Sarveswaran K, Lieberman M, Bernstein GH (2004) Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). J Vac Sci Technol B 22(4):1711–1716

    Article  CAS  Google Scholar 

  17. Alkemade PFA, van Veldhoven E (2012) Deposition, milling, and etching with a focused helium ion beam. In: Stepanova M, Dew S (eds) Nanofabrication: techniques and principles. Springer Vienna, Vienna, pp 275–300

    Chapter  Google Scholar 

  18. Briones E, Alda J, González FJ (2013) Conversion efficiency of broad-band rectennas for solar energy harvesting applications. Opt Express 21(S3):A412–A418

    Article  CAS  Google Scholar 

  19. Hussein M, Fahmy Areed NF, Hameed MFO, Obayya SS (2014) Design of flower-shaped dipole nano-antenna for energy harvesting. Optoelectronics, IET 8(4):167–173

    Article  Google Scholar 

  20. Comsol Multiphysics software.

  21. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  22. Alù A, Nader E (2008) Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett 101(4):4

    Article  Google Scholar 

  23. Zhang Z, Weber-Bargioni A, Wu SW, Dhuey S, Cabrini S, Schuck PJ (2009) Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Lett 9(12):4505–4509

    Article  CAS  Google Scholar 

  24. Campbell SD, Ziolkowski RW (2015) Near-field directive beams from passive and active asymmetric optical nanoantennas. IEEE Journal of Selected Topics in Quantum Electronics 21(4):312–323

    Article  Google Scholar 

  25. Krasnok AE, Simovski CR, Belov PA, Kivshar YS (2014) Superdirective dielectric nanoantennas. Nanoscale 6(13):7354–7361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Toukhy, Y.M., Hussein, M., Hameed, M.F.O. et al. Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications. Plasmonics 13, 503–510 (2018). https://doi.org/10.1007/s11468-017-0536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0536-y

Keywords

Navigation