Skip to main content
Log in

Plasmonics Resonance Enhance Magneto-Optical Effects Through Metallic Sub-wavelength Grating with Bismuth Iron Garnet Slab

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We theoretically investigated an enhancement of the magneto-optical Faraday rotations along with large transmittance in two multilayer structures. The shifts of the Faraday rotation peaks are more obvious than the transmittance peaks when the grating period is changed, which is beneficial to acquire the large Faraday rotation and transmittance. The Faraday rotation of tri-layer system is five times larger than the bilayer system, and the Faraday resonance peak can be mediated by changing the refractive index or thickness of the additional nonmagnetic dielectric layer (NDL) layer. These results are important for applications in highly integrated optoelectronic and magneto-optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  2. Koerkamp KJK, Enoch S, Segerink FB, Hulst NFV, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901

    Article  Google Scholar 

  3. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901

    Article  Google Scholar 

  4. Lomakin V, Michielssen E (2005) Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs. Phys Rev B 71:235117

    Article  Google Scholar 

  5. Schröter U, Heitmann D (1998) Surface-plasmon-enhanced transmission through metallic gratings. Phys Rev B 58:15419

    Article  Google Scholar 

  6. Xie Y, Zakharian AR, Moloney JV, Mansuripur M (2006) Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts. Opt Express 14:6400

    Article  CAS  Google Scholar 

  7. Fernández-Domínguez AI, García-Vidal FJ, Martín-Moreno L (2007) Resonant transmission of light through finite arrays of slits. Phys Rev B 76:235430

    Article  Google Scholar 

  8. Romanato F, Ongarello T, Zacco G, Garoli D, Zilio P, Massari M (2011) Extraordinary optical transmission in one-dimensional gold gratings: near- and far-field analysis. Appl Opt 50:4529–4534

    Article  CAS  Google Scholar 

  9. Chen WC, Landy NL, Kempa K, Padilla WJ (2013) A subwavelength extraordinary-optical-transmission channel in babinet metamaterials. Adv. Opt. Mater. 1:221–226

    Article  Google Scholar 

  10. Armelles G, Cebollada A, Garcia-Martin A, Gonzalez MU (2013) Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv Opt Mater 1:10–35

    Article  Google Scholar 

  11. Ai B, Wang LM, Helmuth M, Yu Y, Zhang G (2014) Asymmetric half-cone/nanohole array films with structural and directional reshaping of extraordinary optical transmission. Nanoscale 6:8997

    Article  CAS  Google Scholar 

  12. BaoJ YJ, Peng RW, Shu DJ, Wang M, Lu X, Shao J, Lu W, Ming NB (2008) Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array. Phys Rev Lett 101:087401

    Article  Google Scholar 

  13. Khanikaev AB, Mousavi SH, Shvets G, Kivshar YS (2010) One-way extraordinary optical transmission and nonreciprocal spoof plasmons. Phys Rev Lett 105:126804

    Article  Google Scholar 

  14. Sun ZJ, Guan TP, Chen W, Zuo XL (2014) Transmission of TE-polarized light through metallic nanoslit arrays assisted by a quasi surface wave. Appl Phys Express 7:032001

    Article  Google Scholar 

  15. Sun MT, Zhang ZL, Wang PJ, Li Q, Ma FC, Xu HX (2013) Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light: Sci Appl 2:e112

    Article  CAS  Google Scholar 

  16. Mary A, Rodrigo SG, Martín-Moreno L, García-Vidal FJ (2007) Theory of light transmission through an array of rectangular holes. Phys Rev B 76:195414

    Article  Google Scholar 

  17. Temnov VV (2012) Ultrafast acousto-magneto-plasmonics. Nat Photonics 6:728–736

    Article  CAS  Google Scholar 

  18. Banthí JC, Meneses-Rodriguez D, Garcia F, Gonzalez MU, Garcia-Martin A, Cebollada A, Armelles G (2012) High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au–SiO2 magnetoplasmonic nanodisks. Adv Mater 24:OP36–OP41

    Google Scholar 

  19. Bai BF, Tervo J, Turunen J (2006) Polarization conversion in resonant magneto-optic gratings. New J Phys 8:205

    Article  Google Scholar 

  20. Belotelov VI, Akimov IA, Pohl M, Kotov VA, Kasture S, Vengurlekar AS, Achanta VG, Yakovlev DR, Zvezdin AK, Bayer M (2011) Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat Nanotechnol 6:370–376

    Article  CAS  Google Scholar 

  21. Chin JY, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov VI, Stritzker B, Giessen H (2013) Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat Commun 4:1599

    Article  Google Scholar 

  22. Kreilkamp LE, Belotelov VI, Chin JY, Neutzner S, Dregely D, Wehlus T, Akimov IA, Bayer M, Stritzker B, Giessen H (2013) Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Phys Rev X 3:041019

    Article  Google Scholar 

  23. Tian TR, Fang YR, Sun MT (2015) Formation of enhanced uniform chiral fields in symmetric dimer nanostructures. Sci Rep 5:17534

    Article  CAS  Google Scholar 

  24. Sapozhnikov MV, Gusev SA, Rogov VV, Ermolaeva OL, Troitskii BB, Khokhlova LV, Smirnov DA (2010) Magnetic and optical properties of nanocorrugated Co films. Appl Phys Lett 96:122507

    Article  Google Scholar 

  25. Papaioannou ET, Kapaklis V, Melander E, Hjörvarsson B, Pappas SD, Patoka P, Giersig M, Fumagalli P, Garcia-Martin A, Ctistis G (2011) Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays. Opt Express 19:23867

    Article  CAS  Google Scholar 

  26. Khanikaev AB, Baryshev AV, Fedyanin AA, Granovsky AB, Inoue M (2007) Anomalous Faraday effect of a system with extraordinary optical transmittance. Opt Express 15:6612

    Article  Google Scholar 

  27. Belotelov VI, Doskolovich LL, Zvezdin AK (2007) Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Phys Rev Lett 98:077401

    Article  CAS  Google Scholar 

  28. Belotelov VI, Bykov DA, Doskolovich LL, Kalish AN, Zvezdin AK (2009) Extraordinary transmission and giant magnetooptical transverse Kerr effect in plasmonics nanostructured films. J. Opt. Soc. Am. B 26:1594

    Article  CAS  Google Scholar 

  29. Dmitriev V, Paixão F, Kawakatsu M (2013) Enhancement of Faraday and Kerr rotations in three-layer heterostructure with extraordinary optical transmission effect. Opt Lett 38:1052

    Article  Google Scholar 

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  Google Scholar 

  31. Li DY, Lei CX, Chen LY, Tang ZX, Zhang SY, Tang SL, Du YW (2015) Waveguide plasmon resonance induced enhancement of the magneto-optics in a Ag/Bi:YIG bilayer structure. J Opt Soc Am B 32:2003

    Article  CAS  Google Scholar 

  32. Baida FI, Van Labeke D (2003) Three-dimensional structures for enhanced transmission through a metallic film: annular aperture arrays. Phys Rev B 67:155314

    Article  Google Scholar 

  33. Porto JA, Garcia-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845

    Article  CAS  Google Scholar 

  34. Belotelov VL, Doskolovich LL, Kotov VA, Bezus EA, Bykov DA, Zvezdin AK (2007) Magnetooptical effects in the metal-dielectric gratings. Opt Commun 278:104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (11374146, U1232210) and National Key Project of Fundamental Research of China (2012CB932304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolong Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Tang, Z., Chen, L. et al. Plasmonics Resonance Enhance Magneto-Optical Effects Through Metallic Sub-wavelength Grating with Bismuth Iron Garnet Slab. Plasmonics 13, 55–62 (2018). https://doi.org/10.1007/s11468-016-0483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0483-z

Keywords

Navigation