Skip to main content

Advertisement

Log in

Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrate significantly longer plasmon lifetime and stronger electric field enhancement by lifting the nanoantenna arrays above the substrate by dielectric nanopillars. The role of the pillar is to offer a more homogeneous dielectric background allowing stronger diffraction coupling among plasmonic nanoantennas leading to a Fanolike asymmetric lineshape. It is found that the electric fields around the nanoantennas can be greatly enhanced when the Fanolike resonance is excited, and a 4.2 times enhancement is achieved compared with the pure resonance in individual nanoantennas. Furthermore, only a collective surface mode with its electric fields of the same direction as the induced electric moment in the nanoantennas could mediate the excitation of such a Fanolike resonance. More importantly, the sensitivity and the figure of merit (FOM) of this plasmonic structure can reach as high as 900 nm/RIU and 53, respectively. Our study offers a new, simple, and efficient way to design the plasmonic systems with desired electric field enhancement and spectral lineshape for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kreibig U, Völlmer M (1995) Optical properties of metal clusters. Springer-Verlag, Berlin

    Book  Google Scholar 

  2. Mao P, Chen J, Xu RQ, Xie GZ, Liu YJ, Gao GH, Wu S (2014) Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties. Appl Phys A Mater Sci Process 117(3):1067–1073

    Article  CAS  Google Scholar 

  3. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  PubMed  Google Scholar 

  4. Liu ZQ, Liu GQ, Liu XS, Zhou HQ, Gu G (2014) Multispectral broadband light transparency of a seamless metal film coated with plasmonic crystals. Plasmonics 6(9):615–622

    Article  CAS  Google Scholar 

  5. Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H (2009) Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci U S A 106(46):19227–19232

    Article  PubMed  PubMed Central  Google Scholar 

  6. Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A, Aizpurua J (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101(15):157403

    Article  CAS  PubMed  Google Scholar 

  7. Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF (1992) Enhanced Raman scattering by fractal clusters: scale invariant theory. Phys Rev B 46(5):2821–2830

    Article  CAS  Google Scholar 

  8. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering. Phys Rev Lett 78(9):1667–1670

    Article  CAS  Google Scholar 

  9. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397

    Article  CAS  PubMed  Google Scholar 

  10. Sánchez EJ, Novotny L, Xie XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82(20):4014–4017

    Article  Google Scholar 

  11. Artar A, Yanik AA, Altug H (2009) Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl Phys Lett 95(5):051105

    Article  CAS  Google Scholar 

  12. Yanik AA, Adato R, Erramilli S, Altug H (2009) Hybridized nanocavities as single-polarized plasmonic antennas. Opt Express 17(23):20900–20910

    Article  CAS  PubMed  Google Scholar 

  13. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  14. White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020–1028

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663

    Article  CAS  PubMed  Google Scholar 

  17. Wu CH, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat Mater 11(1):69–75

    Article  CAS  Google Scholar 

  18. Cetin AE, Altug H (2012) Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano 6(11):9989–9995

    Article  CAS  PubMed  Google Scholar 

  19. Rybin MV, Khanikaev AB, Inoue M, Samusev KB, Steel MJ, Yushin G, Limonov MF (2009) Fano resonance between Mie and Bragg scattering in photonic crystals. Phys Rev Lett 103(2):023901

    Article  CAS  PubMed  Google Scholar 

  20. Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallée F, Brevet PF (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101(19):197401

    Article  CAS  PubMed  Google Scholar 

  21. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988

    Article  CAS  PubMed  Google Scholar 

  22. Fang ZY, Cai JY, Yan ZB, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11(10):4475–4479

    Article  CAS  PubMed  Google Scholar 

  23. Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12(3):1660–1667

    Article  CAS  PubMed  Google Scholar 

  24. Christ A, Zentgraf T, Tikhodeev SG, Gippius NA, Kuhl J, Giessen H (2006) Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations. Phys Rev B 74(15):155435

    Article  CAS  Google Scholar 

  25. Christ A, Ekinci Y, Solak HH, Gippius NA, Tikhodeev SG, Martin OJF (2007) Controlling the Fano interference in a plasmonic lattice. Phys Rev B 76(20):201405

    Article  CAS  Google Scholar 

  26. Chu YZ, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34(3):244–246

    Article  CAS  PubMed  Google Scholar 

  27. Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22(7):1099–1119

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Xu RQ, Mao P, Liu YJ, Tang CJ, Liu JQ, Zhang LB (2014) Fanolike resonance in light transmission through a planar array of silver circular disks. Mater Lett 136:205–208

    Article  CAS  Google Scholar 

  29. Auguié B, Barnes WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101(14):143902

    Article  CAS  PubMed  Google Scholar 

  30. Vecchi G, Giannini V, Gómez Rivas J (2009) Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys Rev Lett 102(14):146807

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Mao P, Xu RQ, Tang CJ, Liu YJ, Wang QG, Zhang LB (2015) Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials. Opt Express 23(12):16238–16245

    Article  CAS  PubMed  Google Scholar 

  32. García de Abajo FJ (2007) Colloquium: light scattering by particle and hole arrays. Rev Mod Phys 79(4):1267–1290

    Article  CAS  Google Scholar 

  33. Vecchi G, Giannini V, Gómez Rivas J (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80(20):201401

    Article  CAS  Google Scholar 

  34. Stewart ME, Mack NH, Malyarchuk V, Soares JA, Lee TW, Gray SK, Nuzzo RG, Rogers JA (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc Natl Acad Sci U S A 103(46):17143–17148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would acknowledge financial supports from the National Natural Science Foundation of China (Nos. 11304159, 11104136, 61471189, 61372045, and 61101012), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Nos. 20133223120006 and 20123223120003), the Qing Lan Project, and the Natural Science Foundation of Zhejiang Province (No. LY14A040004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Chen or Chaojun Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Fan, W., Mao, P. et al. Tailoring Plasmon Lifetime in Suspended Nanoantenna Arrays for High-Performance Plasmon Sensing. Plasmonics 12, 529–534 (2017). https://doi.org/10.1007/s11468-016-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0294-2

Keywords

Navigation