Skip to main content
Log in

Buried Effects of Surface Plasmon Resonance Modes for Periodic Metal–Dielectric Nanostructures Consisting of Coupled Spherical Metal Nanoparticles with Cylindrical Pore Filled with a Dielectric

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We numerically investigate the buried effects of surface plasmon resonance (SPR) modes for the periodic silver-shell nanopearl dimer (PSSND) array and their solid counterparts with different buried depths in a silica substrate by means of finite element method with three-dimensional calculations. The investigated PSSND array is an important novel geometry for plasmonic metal nanoparticles (MNPs), combining the highly attractive nanoscale optical properties of both metallic nanoshell and cylindrical pore filled with a dielectric. Numerical results for SPR modes corresponding to the effects of different illumination wavelengths, absorption spectra, pore–dielectric, electric field components and total field distribution, charge density distribution, and the model of the induced local field or an applied field of the PSSND array are reported as well. It can be found that the buried MNPs with cylindrical pore filled with a dielectric in a substrate exhibit tunable SPR modes corresponding to the bonding and antibonding modes that are not observed for their solid counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  3. Mu J, Li X, Huang WP (2010) Compact Bragg grating with embedded metallic nanostructures. Opt Express 18:15893–15900

    Article  CAS  Google Scholar 

  4. Hao F, Nehl CL, Hafner JH, Nordlander P (2007) Plasmon resonances of a gold nanostar. Nano Lett 7:729–732

    Article  CAS  Google Scholar 

  5. Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas HJ, Aizpurua J, Nordlander P (2008) Metallic nanoparticle array: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2:707–718

    Article  CAS  Google Scholar 

  6. Huang JS, Kern J, Geisler P, Weinmann P, Kamp M, Forchel A, Biagioni P, Hecht B (2010) Mode imaging and selection in strongly coupled nanoantennas. Nano Lett 10:2105–2110

    Article  CAS  Google Scholar 

  7. Ho YZ, Chen WT, Huang YW, Wu PC, Tseng ML, Wang YT, Chau YF, Tsai DP (2012) Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric pores. J. Opt.,14:114010.

    Google Scholar 

  8. Chau YF, Jheng CY, Joe SF, Wang SF, Yan W, Jheng SC, Sun YS, Chu Y, Wei JH (2012) Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer array. J Nanopart Res 15:1424–1429

    Article  Google Scholar 

  9. Chau YF, Yeh HH, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561

    Article  CAS  Google Scholar 

  10. Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nat Nanotechnol 2(6):347–353

    Article  CAS  Google Scholar 

  11. Novotny L (2007) Effective wavelength scaling for optical antennas. Phys Rev Lett 98(26):266802

    Article  Google Scholar 

  12. Ueno K, Uodkazis S, Mino M, Mizeikis V, Misawa H (2007) Spectral sensitivity of uniform array of gold nanorods to dielectric environment. J Phys Chem C 111:4180–4184

    Article  CAS  Google Scholar 

  13. Sawai Y, Takimoto B, Nabika H, Ajito K, Murakoshi K (2007) Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering, J Am Chem Soc 129:1658–1662

    Article  CAS  Google Scholar 

  14. Tsuboi Y, Shoji T, Kitamura N, Takase M, Murakoshi K, Mizumoto Y, Ishihara H (2010) Optical trapping of quantum dots based on gap-mode-extinction of localized surface plasmon. Chem Lett 1:2327–2333

    CAS  Google Scholar 

  15. Monirul IM, Ueno K, Uodkazis S, Yokota Y, Misawa H (2010) Development of interdigitated array electrodes with surface-enhanced Raman scattering functionality. Anal Sci 26:13–18

    Article  Google Scholar 

  16. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  17. Okamoto T (2001) Near-field Optics and Surface Plasmon Polaritons, S. Kawata (ed.). 99, Springer, Berlin

  18. Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles, Wiley.

  19. Taflove A, Hagness S (2000) Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House).

  20. Jin J (2002) The Finite Element Method in Electrodynamics (Wiley).

  21. COMSOL Multiphysics 4.1 TM (2010) http://www.comsol.com

  22. Roman-Velazquez CE, Noguez C, Barrera RG (1999) Optical properties of a spheroid–substrate system. Phys Status Solidi 175((a)):393–397

    Article  CAS  Google Scholar 

  23. Liang Y, Peng W, Hu R, Zou H (2013) Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls. Opt Express 21:6139–6152

    Article  CAS  Google Scholar 

  24. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  CAS  Google Scholar 

  25. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: dubradiant LSPR sensing and tunable Fano resonance. Nano Lett 8:3983–3988

    Article  CAS  Google Scholar 

  26. Liu M, Lee TW, Gray SK, Guyot-Sionnest P, Pelton M (2009) Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett 102:107401

    Article  Google Scholar 

  27. Yang SC, Kobori H, He CL, Lin MH, Chen HF, Li C, Kanehara M, Teranishi T, Gwo S (2010) Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes. Nano Lett 10:632–637

    Article  CAS  Google Scholar 

  28. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819

    Article  CAS  Google Scholar 

  29. Roman-Velazquez CE, Noguez C, Barrera RG (2000) Substrate effects on the optical properties of spheroidal nanoparticles. Phys Rev B 61:10427–10436

    Article  CAS  Google Scholar 

  30. Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface-enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  31. Chang CM, Chu CH, Tseng ML, Chiang HP, Mansuripur M, Tsai DP (2011) Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films. Opt Express 19:9492

    Article  CAS  Google Scholar 

  32. Tseng ML, Chen BH, Chu CH, Chang CM, Lin WC, Chu NN, Mansuripur M, Liu AQ, Tsai DP (2011) Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer. Opt Express 19:16975

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Science Council of the Republic of China (Taiwan) under contract nos. NSC 99-2112- M-231-001-MY3 and NSC 101-3113-P-002-021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Fong Chau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, YF., Jheng, CY. Buried Effects of Surface Plasmon Resonance Modes for Periodic Metal–Dielectric Nanostructures Consisting of Coupled Spherical Metal Nanoparticles with Cylindrical Pore Filled with a Dielectric. Plasmonics 9, 1–9 (2014). https://doi.org/10.1007/s11468-013-9591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9591-1

Keywords

Navigation