Skip to main content

Advertisement

Log in

Low-Energy Collective Electronic Mode at a Noble Metal Interface

Plasmonics Aims and scope Submit manuscript

Abstract

A novel low-energy collective mode of electrons near the Fermi energy has been detected at 5 meV for (9 × 9)-Ag/Cu(111) by high-resolution electron energy loss spectroscopy. This collective electronic excitation does not exist on the bare Cu substrate or on a silver monolayer deposited on Ni(111). It has been assigned to the excitation of the Friedel oscillations in the silver adlayer. Such finding is important for understanding dynamic electron screening at a metal/metal interface. In particular, this work provides the grounds for more accurate theoretical studies aimed at describing the surface loss function and low-energy collective electronic modes in Ag/Cu(111).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Yan J, Gao S (2008) Plasmon resonances in linear atomic chains: free-electron behavior and anisotropic screening of d electrons. Phys Rev B 78(23)

  2. Yu YH, Jiang Y, Tang Z, Guo QL, Jia JF, Xue QK, Wu KH, Wang EG (2005) Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films. Phys Rev B 72(20):205405

    Article  Google Scholar 

  3. Yuan Z, Gao S (2008) Landau damping and lifetime oscillation of surface plasmons in metallic thin films studied in a jellium slab model. Surf Sci 602(2):460–464

    Article  CAS  Google Scholar 

  4. Politano A, Formoso V, Colavita E, Chiarello G (2009) Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111). Phys Rev B 79(4):045426

    Article  Google Scholar 

  5. Qin H, Gao Y, Teng J, Xu H, Wu KH, Gao S (2010) Laterally tunable plasmon resonance in confined biatomic-layer Ag nanodisks. Nano Lett 10(8):2961–2964

    Article  CAS  Google Scholar 

  6. Yan J, Yuan Z, Gao S (2007) End and central plasmon resonances in linear atomic chains. Phys Rev Lett 98(21):216602

    Article  Google Scholar 

  7. Yuan Z, Gao S (2006) Linear-response study of plasmon excitation in metallic thin films: layer-dependent hybridization and dispersion. Phys Rev B 73(15):155411

    Article  Google Scholar 

  8. Yuan Z, Gao S (2009) Linear response approach to collective electronic excitations of solids and surfaces. Comput Phys Commun 180(3):466–473

    Article  CAS  Google Scholar 

  9. Nyga P, Drachev VP, Thoreson MD, Shalaev VM (2008) Mid-IR plasmonics and photomodification with Ag films. Appl Phys B Lasers Opt 93(1):59–68

    Article  CAS  Google Scholar 

  10. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5(1):85–97

    Article  CAS  Google Scholar 

  11. Jain PK, Huang X, El-Sayed IH, El-Sayad MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118

    Article  CAS  Google Scholar 

  12. Politano A (2012) Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces. Philos Mag 92(6):768–778

    Article  CAS  Google Scholar 

  13. Politano A (2011) The excitation of plasmon modes at a mismatched silver/copper interface. Surf Rev Lett 18(5):153–162

    Article  CAS  Google Scholar 

  14. Politano A, Chiarello G (2009) Collective electronic excitations in systems exhibiting quantum well states. Surf Rev Lett 16(2):171–190

    Article  CAS  Google Scholar 

  15. Umezawa K, Nakanishi S, Yoshimura M, Ojima K, Ueda K, Gibson WM (2000) Ag/Cu(111) surface structure and metal epitaxy by impact-collision ion-scattering spectroscopy and scanning tunneling microscopy. Phys Rev B 63(3):035402

    Article  Google Scholar 

  16. Meunier I, Tréglia G, Gay J-M, Aufray B, Legrand B (1999) Ag/Cu(111) structure revisited through an extended mechanism for stress relaxation. Phys Rev B 59(16):10910–10917

    Article  CAS  Google Scholar 

  17. Politano A (2012) Influence of structural and electronic properties on the collective excitations of Ag/Cu(111). Plasmonics 7(1):131–136

    Article  CAS  Google Scholar 

  18. Politano A, Chiarello G (2010) Sputtering-induced modification of the electronic properties of Ag/Cu(111). J Phys D: Appl Phys 43(8):085302

    Article  Google Scholar 

  19. Silkin VM, Quijada M, Muino RD, Chulkov EV, Echenique PM (2007) Dynamic screening and electron–electron scattering in low-dimensional metallic systems. Surf Sci 601(18):4546–4552

    Article  CAS  Google Scholar 

  20. Silkin VM, Quijada M, Vergniory MG, Alducin M, Borisov AG, Muino RD, Juaristi JI, Sánchez-Portal D, Chulkov EV, Echenique PM (2007) Dynamic screening and electron dynamics in low-dimensional metal systems. Nucl Instrum Methods B 258(1):72–78

    Article  CAS  Google Scholar 

  21. Tang SJ, Miller T, Chiang TC (2006) Modification of surface states in ultrathin films via hybridization with the substrate: a study of Ag on Ge. Phys Rev Lett 96(3):036802

    Article  Google Scholar 

  22. Chiang TC (2000) Photoemission studies of quantum well states in thin films. Surf Sci Rep 39(7–8):181–235

    Article  CAS  Google Scholar 

  23. Lüth H (1995) Surfaces and interfaces of solid materials. Springer, Berlin

    Book  Google Scholar 

  24. Ibach H (2006) Physics of surfaces and interfaces. Springer, Berlin

    Google Scholar 

  25. Ibach H, Mills DL (1982) Electron energy loss spectroscopy and surface vibrations. Academic, San Francisco

    Google Scholar 

  26. De Crescenzi M, Piancastelli MN (1996) Electron scattering and related spectroscopies. World Scientific, Singapore

    Book  Google Scholar 

  27. Chiarello G, Formoso V, Santaniello A, Colavita E, Papagno L (2000) Surface-plasmon dispersion and multipole surface plasmons in Al(111). Phys Rev B 62(19):12676–12679

    Article  CAS  Google Scholar 

  28. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2008) Purely quadratic dispersion of surface plasmon in Ag/Ni(111): the influence of electron confinement. Phys Status Solidi RRL 2(2):86–88

    Article  CAS  Google Scholar 

  29. Politano A, Chiarello G, Formoso V, Agostino RG, Colavita E (2006) Plasmon of Shockley surface states in Cu(111): a high-resolution electron energy loss spectroscopy study. Phys Rev B 74(8):081401

    Article  Google Scholar 

  30. Politano A, Formoso V, Chiarello G (2008) Dispersion and damping of gold surface plasmon. Plasmonics 3(4):165–170

    Article  CAS  Google Scholar 

  31. Politano A, Formoso V, Chiarello G (2008) Alkali adsorption on Ni(111) and their coadsorption with CO and O. Appl Surf Sci 254(21):6854–6859

    Article  CAS  Google Scholar 

  32. Politano A, Formoso V, Chiarello G (2009) Dispersion and damping of surface plasmon in Ag thin films grown on Cu(111) and Ni(111). Superlattices Microstruct 46(1–2):137–140

    Article  CAS  Google Scholar 

  33. Mueller MA, Miller T, Chiang TC (1990) Determination of the bulk band-structure of Ag in Ag/Cu(111) quantum-well systems. Phys Rev B 41(8):5214–5220

    Article  CAS  Google Scholar 

  34. Huttunen PA, Vehanen A (1990) Thin Cu/Ag(111) and Ag/Cu(111) structures studied with monoenergetic positrons. Phys Rev B 42(18):11570

    Article  CAS  Google Scholar 

  35. Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78(1):013705

    Article  CAS  Google Scholar 

  36. Lieb EH (1981) Thomas–Fermi and related theories of atoms and molecules. Rev Mod Phys 53(4):603–641

    Article  CAS  Google Scholar 

  37. Gottlieb D, Shu C-W (1997) On the Gibbs phenomenon and its resolution. SIAM Review 39(4):644–668

    Article  Google Scholar 

  38. Sprunger PT, Petersen L, Plummer EW, Lægsgaard E, Besenbacher F (1997) Giant Friedel oscillations on the beryllium(0001) surface. Science 275(5307):1764–1767

    Article  CAS  Google Scholar 

  39. Hofmann P, Briner BG, Doering M, Rust HP, Plummer EW, Bradshaw AM (1997) Anisotropic two-dimensional Friedel oscillations. Phys Rev Lett 79(2):265–268

    Article  CAS  Google Scholar 

  40. Cheianov VV, Fal’ko VI (2006) Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. Phys Rev Lett 97(22):226801

    Article  Google Scholar 

  41. Kanisawa K, Butcher MJ, Yamaguchi H, Hirayama Y (2001) Imaging of Friedel oscillation patterns of two-dimensionally accumulated electrons at epitaxially grown InAs(111)A surfaces. Phys Rev Lett 86(15):3384–3387

    Article  CAS  Google Scholar 

  42. Egger R, Grabert H (1995) Friedel oscillations for interacting fermions in one dimension. Phys Rev Lett 75(19):3505–3508

    Article  CAS  Google Scholar 

  43. Goldoni A, Modesti S (1997) Strong correlation effects in the (3 × 3) charge density wave phase of Sn/Ge(111). Phys Rev Lett 79(17):3266–3269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Politano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politano, A. Low-Energy Collective Electronic Mode at a Noble Metal Interface. Plasmonics 8, 357–360 (2013). https://doi.org/10.1007/s11468-012-9397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9397-6

Keywords

Navigation