Skip to main content
Log in

A Highly Sensitive Enzyme Catalytic Method for the Detection of Ethanol Based on Resonance Scattering Effect of Gold Particles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In pH 8.4 Tris–HCl buffer solutions, alcohol dehydrogenase catalyzed the reaction between ethanol and nicotinamide adenine dinucleotide to produce acetaldehyde. In the medium of HCl, acetaldehyde reduced HAuCl4 to form gold particles that exhibited a strong resonance scattering (RS) peak at 600 nm. The RS peak increased with ethanol concentration. The increased RS intensity at 600 nm (ΔI 600 nm) was proportional to the ethanol concentration (C) from 0.068 to 10.2 mmol/L, with a regression equation of ΔI 600 nm = 35.59 C + 16.1, and a detection limit (3σ) of 3.2 μmol/L. This proposed method was applied to detect ethanol in saliva and plant cell culture medium samples, with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thongchul N, Navankasattusas S, Yang ST (2010) Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis. Bioprocess Biosyst Eng 33:407–416

    Article  CAS  Google Scholar 

  2. Kim I, Han OH, Chae SA, Paik Y, Kwon SH, Lee KS, Sung YE, Kim HS (2011) Catalytic reactions in direct ethanol fuel cells. Angew Chem Int Ed 50:2270–2274

    CAS  Google Scholar 

  3. Atsushi H, Atsushi Y, Mikihito K, Ni K, Takaharu K (2005) Simple and rapid determination of metabolite content in plant cell culture medium using an FT-IR/ATR method. Bioprocess Biosyst Eng 27:115–123

    Article  Google Scholar 

  4. Tangerman A (1997) Highly sensitive gas chromatographic analysis of ethanol in whole blood, serum, urine, and fecal supernatants by the direct injection method. Clin Chem 43:1003–1009

    CAS  Google Scholar 

  5. Yarita T, Nakajima R, Otsuka S (2002) Determination of ethanol in alcoholic beverages by high-performance liquid chromatography-flameionization detection using pure water as mobile phase. J Chromatograph A 976:387–391

    Article  CAS  Google Scholar 

  6. Bernero M, Bare RE, Haith CE, Grossman MJ (2004) Detection of alkanes, alcohols, and aldehydes using bioluminescence. Biotechnol Bioeng 87:170–177

    Article  Google Scholar 

  7. Deng L, Zhang LH, Shang L, Guo SJ, Wen D, Wang FA, Dong SJ (2009) Electrochemiluminescence detection of NADH and ethanol based on partial sulfonation of sol–gel network with gold nanoparticles. Biosens Bioelectron 24:2273–2276

    Article  CAS  Google Scholar 

  8. Ye Q, Xu QF, Yu YA, Qu RH, Fang ZJ (2009) Rapid and quantitative detection of ethanol proportion in ethanol–gasoline mixtures by Raman spectroscopy. Opt Commun 282:3785–3788

    Article  CAS  Google Scholar 

  9. Rangel AOSS, Toth IV (2000) Enzymatic determination of ethanol and glycerol by flow injection parallel multi-site detection. Anal Chim Acta 416:205–210

    Article  CAS  Google Scholar 

  10. Lee CA, Tsai YC (2009) Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sens Actuators B 138:518–523

    Article  CAS  Google Scholar 

  11. Gallignani M, Ayala C, Brunetto MR, Burguera JL, Burguera M (2005) A simple strategy for determining ethanol in all types of alcoholic beverages based on its on-line liquid–liquid extraction with chloroform, using a flow injection system and Fourier transform infrared spectrometric detection in the mid-IR. Talanta 68:470–479

    Article  CAS  Google Scholar 

  12. Garrigues JM, Perez-Ponce A, Garrigues S (1997) Direct determination of ethanol in liquid samples by means of vapor phase–fourier ransform infrared spectrometry. Vib Spectrosc 15:219–281

    Article  CAS  Google Scholar 

  13. Pinalli R, Nachtigall FF, Ugozzoli F, Dalcanale E (1999) Supramolecular sensors for the detection of alcohols. Angew Chem Int Ed 38:2377–2380

    Article  CAS  Google Scholar 

  14. Shkotova LV, Soldatkin AP, Gonchar MV, SchuhmannW DSV (2006) Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Mater Sci Eng: C 26:411–414

    Article  CAS  Google Scholar 

  15. Ajay AK, Srivastava ND (2007) Microtubular conductometric biosensor for ethanol detection. Biosens Bioelectron 23:281–284

    Article  CAS  Google Scholar 

  16. Liu WH, Yang W, Wu XQ, Lin ZX (2007) Direct determination of ethanol by laser Raman spectra with internal standard method. Chin J Anal Chem 35:416–418

    CAS  Google Scholar 

  17. Pasternack RF, Collings P (1995) Resonance light scattering: a new technique for studying chromosphere aggregation. Science 269:935–939

    Article  CAS  Google Scholar 

  18. Luo HQ, Li NB, Liu SP (2006) Resonance rayleigh scattering study of interaction of hyaluronic acid with ethyl violet dye and its analytical application. Biosens Bioelectron 21:1186–1194

    Article  CAS  Google Scholar 

  19. Du BA, Li ZP, Liu CH (2006) One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew Chem Int Ed 45:8022–8025

    Article  CAS  Google Scholar 

  20. Jiang ZL, Sun SJ, Liang AH, Huang WX, Qin AM (2006) Gold-labeled nanoparticle-based immunoresonance scattering spectral assay for trace apolipoprotein AI and apolipoprotein B. Clin Chem 52:1389–1394

    Article  CAS  Google Scholar 

  21. Liang AH, Zhang NN, Jiang ZL, Wang SM (2008) A sensitive resonance scattering spectral assay for the determination of trace H2O2 based on the HRP catalytic reaction and nanogold aggregation. J Fluoresc 18:1035–1041

    Article  CAS  Google Scholar 

  22. Jiang ZL, Fan YY, Chen ML, Liang AH, Liao XJ, Wen GQ, Shen XC, He XC, Pan HC, Jiang HS (2009) Resonance scattering spectral detection of trace Hg(II) using aptamer modified nanogold as probe and nanocatalyst. Anal Chem 81:5439–5445

    Article  CAS  Google Scholar 

  23. Liang AH, Zhou LP, Qin HM, Zhang Y, Ouyang HX, Jiang ZL (2011) A highly sensitive aptamer-nanogold catalytic resonance scattering spectral assay for melamine. J Fluoresc 21:1907–1912

    Article  CAS  Google Scholar 

  24. Jiang ZL, Li F, Li TS, Liang H (2000) The relationship between resonance scattering intensity and the size of Au particles. Chem J Chinese U 21:1488–1490

    CAS  Google Scholar 

  25. Wu LN, Zhang XJ, Ju HX (2007) Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal Chem 79:453–458

    Article  CAS  Google Scholar 

  26. Shi J, Ci PL, Wang F, Peng H, Yang PX, Wang LW, Wang QJ, Chu PK (2011) Pd/Ni/Si-microchannel-plate-based amperometric sensor for ethanol detection. Electrochim Acta 56:4197–4202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work supported by the National Natural Science Foundation of China (nos. 20865002, 21075023, and 21165005) and the Natural Science Foundation of Guangxi (nos. 0832260 and 0991021Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Wang, P., Li, T. et al. A Highly Sensitive Enzyme Catalytic Method for the Detection of Ethanol Based on Resonance Scattering Effect of Gold Particles. Plasmonics 8, 307–312 (2013). https://doi.org/10.1007/s11468-012-9390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9390-0

Keywords

Navigation