Skip to main content
Log in

Nanostructuring of Continuous Gold Film by Laser Radiation Under Surface Plasmon Polariton Resonance Conditions

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The physical mechanisms of metallic nanoparticles formation by laser technology were studied. The system air/Au film/glass was irradiated by laser at the conditions of surface plasmon resonance. A surface electromagnetic wave was excited in Kretchmann configuration by the fundamental and second harmonics of the Q-switched YAG/Nd+3 laser with pulse power density close to the threshold of melting. Nanostructuring of Au film was observed only for the second harmonic (λ = 0.532 μm) irradiation at the surface plasmon polariton resonance (SPR) conditions. Estimations were done using the interference model of the differently directed plasmon polariton waves excited by a surface electromagnetic wave on the metal surface. It was shown that a regular pattern of locally heated spots can be formed in a metallic film by pulsed laser irradiation. The spatial distribution of this pattern is close to the period of interference. The observed effect of laser nanofragmentation is explained by the self-organization of plasmon polariton subsystem in the process of Au nanoparticles formation at high laser intensity levels. These methods open new possibilities for nanostructured surfaces formation utilizing simple self-organization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232

    Article  CAS  Google Scholar 

  2. Niidome Y, Hori A, Sato T, Yamada S (2000) Enormous size growth of thiol-passivated gold nanoparticles induced by near-IR laser light. Chem Lett 29:310–311

    Article  Google Scholar 

  3. Wood RF, Giles GE (1981) Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting. Phys Rev B 23:2923–2942

    Article  CAS  Google Scholar 

  4. Yang RT, Wood RF, Christie WH (1982) Laser processing for high-efficiency Si solar cells. J Appl Phys 53:1178–1189

    Article  Google Scholar 

  5. Lowndes DH, Wood RF, Narayan J (1984) Pulsed-laser melting of amorphous silicon: time-resolved measurements and model calculations. Phys Rev Lett 52:561–564

    Article  CAS  Google Scholar 

  6. Isenor NR (1977) CO2 laser-produced ripple patterns on NixP1—x surfaces. Appl Phys Lett 31:148–150

    Article  CAS  Google Scholar 

  7. Sipe JE, Young JF, Preston JS, van Driel HM (1983) Laser-induced periodic surface structure. I Theory Phys Rev B 27:1141–1154

    CAS  Google Scholar 

  8. Emelianov VI, Koroteev NI (1981) Giant raman scattering of light by molecules adsorbed on the surface of a metal. Phys Usp Adv Phys Sci 135:345–363

    Google Scholar 

  9. Fedorenko L, Snopok B, Yusupov M, Lytvyn O, Burlachenko Yu (2009) Laser assisted Au nanocrystal formation in conditions of surface plasmon resonance. Acta Phys Pol A 115:953–956

    Google Scholar 

  10. Koo JC, Slusher RE (1976) Diffraction from laser-induced deformation on reflective surfaces. Appl Phys Lett 28:614–616

    Article  CAS  Google Scholar 

  11. Leamy HJ, Rozgonyi GA, Sheng TT, Geller GK (1978) Periodic regrowth phenomena produced by laser annealing of ion-implanted silicon. Appl Phys Lett 32:535–536

    Article  CAS  Google Scholar 

  12. Chen CK, de Castro ARB, Shen YR (1981) Surface-enhanced second-harmonic generation. Phys Rev Lett 46:145–148

    Article  CAS  Google Scholar 

  13. Agranovich VM, Mills DL (1982) Surface polaritons. Nord Holland, Amsterdam

    Google Scholar 

  14. Savchenko A, Kashuba E, Kashuba V, Snopok B (2007) Imaging technique for the screening of protein-protein interactions using scattered light under surface plasmon resonance conditions. Anal Chem 79:1349–1355

    Article  CAS  Google Scholar 

  15. Azzam RMA, Bashara NM (1981) Ellipsometry and polarized light. Mir, Moscow

    Google Scholar 

  16. Bonch-Bruevich AM, Kochergina MK, Libenson MN, Makin VS, Pudkov SD, Trubaev VV (1982) Bull Russ Acad Sci Phys 46:1186–1193

    CAS  Google Scholar 

  17. Horcas I et al (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  18. Aspnes DE, Kinsbron E, Bacon DD (1980) Optical properties of Au: sample effects. Phys Rev B 21:3290–3299

    Article  CAS  Google Scholar 

  19. Snopok BA et al (2001) Optical biosensors based on the surface plasmon resonance phenomenon: optimization of the metal layer parameters. Semiconductor Phys Quant Electron Optoelectronics 4(1):56–69

    CAS  Google Scholar 

  20. Snopok BA et al (1999) Interfacial architecture on the fractal support: polycrystalline gold films as support for self-assembling monolayers. Semiconductor Phys Quant Electron Optoelectronics 2(3):86–97

    CAS  Google Scholar 

  21. Lysenko SI, Snopok BA, Sterligov VA (2010) Scattering of surface plasmon–polaritons and volume waves by thin gold films. Opt Spectrosc 188:581–590

    Article  Google Scholar 

  22. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  23. Baidullaeva A, Vlasenko OI, Lomovtsev AB, Mozol PE (2001) Laser shock wave stimulated defects in p-CdTe crystals. Phys B 308–310:971–975

    Article  Google Scholar 

  24. Zuev VS and Zueva Y (2008) Very slow surface plasmons: theory and practice. Available at: http://arxiv.org/abs/0811.0105.

  25. Kuzmin NV, Alkemade PFA, ’t Hooft GW, Eliel ER (2007) Bouncing surface plasmons. Opt Express 15:13757–13767

    Article  Google Scholar 

  26. Libenson MN (2007) Lasernoe indutsyrovannye opticheskie i termicheskie protsessy v kondensirovannykh sredakh. Nauka, SPb

  27. Boltovets PM, Kravchenko SA, Snopok BA (2010) Building interfacial nanostructures by size-controlled chemical etching. Plasmonics 5(4):395–403

    Article  CAS  Google Scholar 

  28. Veiko VP, Metev SM (1994) Laser assisted microtechnology. Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. Dmytruk and Dr. Yu. Tarasov for their interest in this work, Dr. G. Rud’ko for useful discussion, and the National Academy of Sciences of Ukraine for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Fedorenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorenko, L., Mamykin, S., Lytvyn, O. et al. Nanostructuring of Continuous Gold Film by Laser Radiation Under Surface Plasmon Polariton Resonance Conditions. Plasmonics 6, 363–371 (2011). https://doi.org/10.1007/s11468-011-9212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-011-9212-9

Keywords

Navigation