Skip to main content
Log in

Optimizing hydrogen evolution reaction: Computational screening of single metal atom impurities in 2D MXene Nb4C3O2

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

MXenes, a novel class of 2D transition metal carbides and nitrides, have recently emerged as a promising candidate in the quest for efficient catalysts for the hydrogen evolution reaction. To enhance the performance of 2D MXenes with modest or poor catalytic efficiency, a particularly prosperous strategy involves doping with transition and noble metal atoms. Taking the Nb4C3O2 monolayer as a model, we explore substitutional metallic impurities, which serve as single-atom catalysts embedded within the Nb4C3O2 surface. Our findings demonstrate the ability to finely tune the atomic H binding energy within a 0.6 eV range, showing the potential for precise control in catalytic applications. Across different transition and noble metals, the single atoms integrated into Nb4C3O2 effectively adjust the free energy of H adsorption at nearby O atoms, achieving values comparable to or superior to Pt catalysts. A comprehensive examination of the electronic properties around the impurities reveals a correlation between changes in local reactivity and charge transfer to neighboring O atoms, where H atoms bind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Y. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54(1), 52 (2015)

    Article  ADS  Google Scholar 

  2. M. Luo, J. T. Yang, X. G. Li, M. Eguchi, Y. Yamauchi, and Z. L. Wang, Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions, Chem. Sci. (Camb.) 14(13), 3400 (2023)

    Article  Google Scholar 

  3. J. K. Nørskov, T. Bligaard, T. A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)

    Article  Google Scholar 

  4. J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5(11), 909 (2006)

    Article  ADS  Google Scholar 

  5. J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1(1), 37 (2009)

    Article  Google Scholar 

  6. J. Mahmood, F. Li, S. M. Jung, M. S. Okyay, I. Ahmad, S. J. Kim, N. Park, H. Y. Jeong, and J. B. Baek, An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction, Nat. Nanotechnol. 12(5), 441 (2017)

    Article  ADS  Google Scholar 

  7. Z. X. Zhu, Y. X. Lin, P. Fang, M. S. Wang, M. Z. Zhu, X. Y. Zhang, J. S. Liu, J. G. Hu, and X. Y. Xu, Orderly nanodendritic nickel substitute for Raney nickel catalyst improving alkali water electrolyzer, Adv. Mater. 36(1), 2307035 (2024)

    Article  Google Scholar 

  8. H. Y. Jin, C. X. Guo, X. Liu, J. L. Liu, A. Vasileff, Y. Jiao, Y. Zheng, and S. Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis, Chem. Rev. 118(13), 6337 (2018)

    Article  Google Scholar 

  9. M. Gong, W. Zhou, M. C. Tsai, J. G. Zhou, M. Y. Guan, M. C. Lin, B. Zhang, Y. F. Hu, D. Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang, and H. J. Dai, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nat. Commun. 5(1), 4695 (2014)

    Article  ADS  Google Scholar 

  10. L. Q. Wang, Y. X. Hao, L. M. Deng, F. Hu, S. Zhao, L. L. Li, and S. J. Peng, Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction, Nat. Commun. 13(1), 5785 (2022)

    Article  ADS  Google Scholar 

  11. P. Fang, M. Z. Zhu, J. Liu, Z. X. Zhu, J. G. Hu, and X. Y. Xu, Making ternary-metal hydroxy-sulfide catalyst via cathodic reconstruction with ion regulation for industrial-level hydrogen generation, Adv. Energy Mater. 13(35), 2301222 (2023)

    Article  Google Scholar 

  12. L. Bian, Z. Y. Zhang, H. Tian, N. N. Tian, Z. Ma, and Z. L. Wang, Grain boundary-abundant copper nanoribbons on balanced gas–liquid diffusion electrodes for efficient CO2 electroreduction to C2H4, Chin. J. Catal. 54, 199 (2023)

    Article  Google Scholar 

  13. Z. Y. Zhang, H. Tian, L. Bian, S. Z. Liu, Y. Liu, and Z. L. Wang, Cu–Zn-based alloy/oxide interfaces for enhanced electroreduction of CO2 to C2+ products, J. Energy Chem. 83, 90 (2023)

    Article  Google Scholar 

  14. Y. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, and H. J. Dai, MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)

    Article  Google Scholar 

  15. M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. S. Li, and S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J. Am. Chem. Soc. 135(28), 10274 (2013)

    Article  Google Scholar 

  16. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. B. Chork-endorff, and J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127(15), 5308 (2005)

    Article  Google Scholar 

  17. C. Tsai, F. Abild-Pedersen, and J. K. Nørskov, Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions, Nano Lett. 14(3), 1381 (2014)

    Article  ADS  Google Scholar 

  18. J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, and X. Bao, Triggering the electro-catalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping, Energy Environ. Sci. 8(5), 1594 (2015)

    Article  Google Scholar 

  19. V. Ramalingam, P. Varadhan, H. C. Fu, H. Kim, D. L. Zhang, S. M. Chen, L. Song, D. Ma, Y. Wang, H. N. Alshareef, and J. H. He, Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution, Adv. Mater. 31(48), 1903841 (2019)

    Article  Google Scholar 

  20. Q. Lu, Y. Yu, Q. Ma, K. Chen, and H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Adv. Mater. 28(10), 1917 (2016)

    Article  Google Scholar 

  21. M. Naguib, O. Mashtalir, C. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-dimensional transition metal carbides, ACS Nano 6(2), 1322 (2012)

    Article  Google Scholar 

  22. M. Khazaei, M. Arai, T. Sasaki, C. Y. Chung, N. S. Venkataramanan, M. Estili, Y. Sakka, and Y. Kawazoe, Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides, Adv. Funct. Mater. 23(17), 2185 (2013)

    Article  Google Scholar 

  23. B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater. 2(2), 16098 (2017)

    Article  ADS  Google Scholar 

  24. X. T. Jiang, A. V. Kuklin, A. Baev, Y. Q. Ge, H. Ågren, H. Zhang, and P. N. Prasad, Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848, 1 (2020)

    Article  ADS  Google Scholar 

  25. Z. W. Seh, K. D. Fredrickson, B. Anasori, J. Kibsgaard, A. L. Strickler, M. R. Lukatskaya, Y. Gogotsi, T. F. Jaramillo, and A. Vojvodic, Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett. 1(3), 589 (2016)

    Article  Google Scholar 

  26. G. Gao, A. P. O’Mullane, and A. Du, 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction, ACS Catal. 7(1), 494 (2017)

    Article  Google Scholar 

  27. M. Pandey and K. S. Thygesen, Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study, J. Phys. Chem. C 121(25), 13593 (2017)

    Article  Google Scholar 

  28. S. Bai, M. Yang, J. Jiang, X. He, J. Zou, Z. Xiong, G. Liao, and S. Liu, Recent advances of MXenes as electro-catalysts for hydrogen evolution reaction, npj 2D Mater. Appl. 5, 78 (2021)

    Article  Google Scholar 

  29. Q. Kong, X. An, L. Huang, X. Wang, W. Feng, S. Qiu, Q. Wang, and C. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure a hydrogen evolution performance, Front. Phys. 16(5), 53506 (2021)

    Article  ADS  Google Scholar 

  30. Y. Tang, C. H. Yang, X. T. Xu, Y. Q. Kang, Y. Henzie, W. X. Que, and Y. Yamauchi, MXene nanoarchitectonics: Defect-engineered 2D MXenes towards enhanced electrochemical water splitting, Adv. Energy Mater. 12(12), 2103867 (2022)

    Article  Google Scholar 

  31. T. Y. Shuai, Q. N. Zhan, H. M. Xu, Z. J. Zhang, and G. R. Li, Recent developments of MXene-based catalysts for hydrogen production by water splitting, Green Chem. 25(5), 1749 (2023)

    Article  Google Scholar 

  32. N. C. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. W. Xiao, R. Y. Li, T. K. Sham, L. M. Liu, G. A. Botton, and X. L. Sun, Platinum single-atom and cluster catalysis of the hydrogen evolution reaction, Nat. Commun. 7(1), 13638 (2016)

    Article  ADS  Google Scholar 

  33. A. Alarawi, V. Ramalingam, and J. H. He, Recent advances in emerging single atom confined two-dimensional materials for water splitting applications, Mater. Today Energy 11, 1 (2019)

    Article  Google Scholar 

  34. D. N. Sredojević, M. R. Belić, and Ž. Šljivančanin, Hydrogen evolution reaction over single-atom catalysts based on metal adatoms at defected graphene and h-BN, J. Phys. Chem. C 124(31), 16860 (2020)

    Article  Google Scholar 

  35. J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi, and G. Wang, Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction, Nat. Catal. 1(12), 985 (2018)

    Article  Google Scholar 

  36. D. A. Kuznetsov, Z. Chen, P. V. Kumar, A. Tsoukalou, A. Kierzkowska, P. M. Abdala, O. V. Safonova, A. Fedorov, and C. R. Müller, Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction, J. Am. Chem. Soc. 141(44), 17809 (2019)

    Article  Google Scholar 

  37. H. Liu, Z. Hu, Q. Liu, P. Sun, Y. Wang, S. Chou, Z. Hu, and Z. Zhang, Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values, J. Mater. Chem. A 8(46), 24710 (2020)

    Article  Google Scholar 

  38. T. A. Le, Q. V. Bui, N. Q. Tran, Y. Cho, Y. Hong, Y. Kawazoe, and H. Lee, Synergistic effects of nitrogen doping on MXene for enhancement of hydrogen evolution reaction, ACS Sustain. Chem. & Eng. 7(19), 16879 (2019)

    Article  Google Scholar 

  39. G. X. Qu, Y. Zhou, T. L. Wu, G. L. Zhao, F. F. Li, Y. J. Kang, and C. Xu, Phosphorized MXene-phase molybdenum carbide as an earth-abundant hydrogen evolution electrocatalyst, ACS Appl. Energy Mater. 1(12), 7206 (2018)

    Article  Google Scholar 

  40. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71(3), 035109 (2005)

    Article  ADS  Google Scholar 

  41. J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. G. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Moller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Hakkinen, G. K. H. Madsen, R. M. Nieminen, J. K. Norskov, M. Puska, T. T. Rantala, J. Schiotz, K. S. Thygesen, and K. W. Jacobsen, Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method, J. Phys.: Condens. Matter 22(25), 253202 (2010)

    ADS  Google Scholar 

  42. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  43. J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71(3), 035109 (2005)

    Article  ADS  Google Scholar 

  44. Homepage: wiki.fysik.dtu.dk/gpaw/setups/setups.html

  45. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  46. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  47. E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys. 17(1), 87 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  48. D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Math. Program. 45(1–3), 503 (1989)

    Article  MathSciNet  Google Scholar 

  49. S. R. Bahn and K. W. Jacobsen, An object-oriented scripting interface to a legacy electronic structure code, Comput. Sci. Eng. 4(3), 56 (2002)

    Article  Google Scholar 

  50. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, New York: Oxford University Press, 1990

    Book  Google Scholar 

  51. A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dulak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. Bjerre Jensen, J. Kermode, J. R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, The atomic simulation environment — a Python library for working with atoms, J. Phys.: Condens. Matter 29(27), 273002 (2017)

    Google Scholar 

  52. Y. W. Cheng, J. H. Dai, J. M. Zhang, and Y. Song, Two-dimensional, ordered, double transition metal carbides (MXenes): A new family of promising catalysts for the hydrogen evolution reaction, J. Phys. Chem. C 122(49), 28113 (2018)

    Article  Google Scholar 

  53. B. Hammer and J. K. Nørskov, Theoretical surface science and catalysis - Calculations and concepts, Adv. Catal. 45, 71 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Serbian Academy of Sciences and Arts under Grant No. F-18. We thank the Advanced Scientific Computing Center of the Texas A&M University at Qatar for providing us access to the RAAD supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Željko Šljivančanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šljivančanin, Ž. Optimizing hydrogen evolution reaction: Computational screening of single metal atom impurities in 2D MXene Nb4C3O2. Front. Phys. 19, 53205 (2024). https://doi.org/10.1007/s11467-024-1392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1392-9

Keywords

Navigation