Skip to main content
Log in

Review of the role of ionic liquids in two-dimensional materials

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are expected to be used as readily available “designer” solvents, characterized by a number of tunable properties that can be obtained by modulating anion and cation combinations and ion chain lengths. Among them, its high ionicity is outstanding in the preparation and property modulation of two-dimensional (2D) materials. In this review, we mainly focus on the ILs-assisted exfoliation of 2D materials towards large-scale as well as functionalization. Meanwhile, electric-field controlled ILs-gating of 2D material systems have shown novel electronic, magnetic, optical and superconducting properties, attracting a broad range of scientific research activities. Moreover, ILs have also been extensively applied in various field practically. We summarize the recent developments of ILs modified 2D material systems from the electrochemical, solar cells and photocatalysis aspects, discuss their advantages and possibilities as “designer solvent”. It is believed that the design of ILs accompanying with diverse 2D materials will not only solve several scientific problems but also enrich materials design and engineer of 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

[BMIM]:

1-butyl-3-methylimidazolium

[EMIM]:

1-ethyl-3-methylimidazolium

[PF6]:

hexafluorophosphate

[BF4]:

tetrafluoroborate

[TFSI] or [NTf2]:

bis(trifluoromethylsulfonyl) imide

ILs:

Ionic liquids

2D materials:

two-dimensional materials

TMDs:

transition metal dichalcogenide

MoS2 :

molybdenum disulfide

MoSe2 :

Molybdenum(IV) selenide

MoTe2 :

Molybdenum Ditelluride

WS2 :

Tungsten disulfide

WSe2 :

Tungsten(IV) selenide

ReS2 :

Rhenium Disulfide

TaS2 :

tantalum disulfide

NMDs:

noble metal dichalcogenides

PdSe2 :

Palladium diselenide

PtSe2 :

Platina Diselenide

PtS2 :

Platinum disulfide

h-BN:

hexanol boron nitride

BP:

black phosphorus

LDHs:

layered double hydroxide

g-C3N4 :

graphite carbon nitrides

MOFs:

metal-organic frameworks

COFs:

covalent-organic frameworks

LPE:

liquid phase exfoliation

NMP:

N-methylpyrrolidone

N12P:

1-dodecyl-2-pyrrolidone

(P[VBTP][Cl]):

poly(triphenyl-4-vinylbenzylphosphonium chloride)

(P[VimBu][Br]):

poly(3-N-butyl-1-vinylimidazolium bromide)

(PNIL):

(poly(N-isopropylacrylamide-co-IL)

FG:

fluorinated graphene

EDLTs:

electrical double-layer transistors

FETs:

field-effect transistors

CNT:

carbon nanotubes

SS:

subthreshold swing

CDW:

charge-density-wave

Cr2Ge2Te6 :

Chromium germanium tellurium

m-CTF:

microporous covalent triazine structure

rGO:

reduced graphene oxide

aMEGO:

activated microwave exfoliated graphene oxide

GNS:

2D graphene nanosheets

GO:

graphite oxide

(EMI-TFSI):

1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide

Ti3C2Tx :

Titanium carbide

MSCs:

micro-supercapacitors

AA-Ti3C2 :

AA-cation-intercalated Ti3C2Tx

EMIM-TFSI:

1-ethly-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide

DMIM:

1,3-dimethyl-3-imidazolium

Cs0.08FA0.92PbI3 :

formamidinium-cesium lead iodide perovskite

[Hnmp]Cl:

[N-methyl-pyrrolidonium] chloride

Bi2O2CO3 :

Bismuth subcarbonate

Bi2Se3 :

bismuth selenide

[C16mim]Br:

1-hexadecyl-3-methylimidazole bromide

Bi2MoO6 :

Bismuth molybdenum oxide

Bi2WO6 :

Bismuth tungstate

References

  1. T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis, Chem. Rev. 99(8), 2071 (1999)

    Article  Google Scholar 

  2. J. P. Hallett and T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2, Chem. Rev. 111(5), 3508 (2011)

    Article  Google Scholar 

  3. S. K. Singh and A. W. Savoy, Ionic liquids synthesis and applications: An overview, J. Mol. Liq. 297, 112038 (2020)

    Article  Google Scholar 

  4. K. S. Egorova, E. G. Gordeev, and V. P. Ananikov, Biological activity of ionic liquids and their application in pharmaceutics and medicine, Chem. Rev. 117, 7132 (2017)

    Article  Google Scholar 

  5. J. M. Gomes, S. S. Silva, and R. L. Reis, Biocompatible ionic liquids: Fundamental behaviours and applications, Chem. Soc. Rev. 48(15), 4317 (2019)

    Article  Google Scholar 

  6. D. R. MacFarlane, M. Forsyth, P. C. Howlett, M. Kar, S. Passerini, J. M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. J. Zheng, S. G. Zhang, and J. Zhang, Ionic liquids and their solid-state analogues as materials for energy generation and storage, Nat. Rev. Mater. 1(2), 15005 (2016)

    Article  ADS  Google Scholar 

  7. W. J. Zhou, M. Zhang, X. Y. Kong, W. W. Huang, and Q. C. Zhang, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries, Adv. Sci. (Weinh.) 8(13), 2004490 (2021)

    Google Scholar 

  8. L. Li, N. Zhao, W. Wei, and Y. H. Sun, A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences, Fuel 108, 112 (2013)

    Article  Google Scholar 

  9. X. X. Tan, X. F. Sun, and B. X. Han, Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation, Natl. Sci. Rev. 9(4), nwab022 (2022)

    Article  ADS  Google Scholar 

  10. E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal, and J. Perez-Ramirez, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes, Energy Environ. Sci. 6(11), 3112 (2013)

    Article  Google Scholar 

  11. A. J. Greer, J. Jacquemin, and C. Hardacre, Industrial applications of ionic liquids, Molecules 25 (2020)

  12. N. Nasirpour, M. Mohammadpourfard, and S. Z. Heris, Ionic liquids: Promising compounds for sustainable chemical processes and applications, Chem. Eng. Res. Des. 160, 264 (2020)

    Article  Google Scholar 

  13. A. A. Elgharbawy, F. A. Riyadi, M. Z. Alam, and M. Moniruzzaman, Ionic liquids as a potential solvent for lipase-catalysed reactions: A review, J. Mol. Liq. 251, 150 (2018)

    Article  Google Scholar 

  14. J. C. Cui, Y. Li, D. Chen, T. G. Zhan, and K. D. Zhang, Ionic liquid-based stimuli-responsive functional materials, Adv. Funct. Mater. 30(50), 2005522 (2020)

    Article  Google Scholar 

  15. C. W. Cho, T. P. T. Pham, Y. F. Zhao, S. Stolte, and Y. S. Yun, Review of the toxic effects of ionic liquids, Sci. Total Environ. 786, 147309 (2021)

    Article  ADS  Google Scholar 

  16. X. C. Duan, H. Huang, S. H. Xiao, J. W. Deng, G. Zhou, Q. H. Li, and T. Wang, 3D hierarchical CuO mesocrystals from ionic liquid precursors: Towards better electrochemical performance for Li-ion batteries, J. Mater. Chem. A 4(21), 8402 (2016)

    Article  Google Scholar 

  17. R. D. Rogers and K. R. Seddon, Ionic liquids — Solvents of the future, Science 302(5646), 792 (2003)

    Article  Google Scholar 

  18. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)

    Article  ADS  Google Scholar 

  19. W. Kong, H. Kum, S. H. Bae, J. Shim, H. Kim, L. P. Kong, Y. Meng, K. J. Wang, C. Kim, and J. Kim, Path towards graphene commercialization from lab to market, Nat. Nanotechnol. 14(10), 927 (2019)

    Article  ADS  Google Scholar 

  20. K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)

    Article  Google Scholar 

  21. S. Mukherjee, Z. Ren, and G. Singh, Beyond graphene anode materials for emerging metal ion batteries and supercapacitors, Nano-Micro Lett. 10(4), 70 (2018)

    Article  ADS  Google Scholar 

  22. S. Jo, N. Ubrig, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Mono- and bilayer WS2 light-emitting transistors, Nano Lett. 14(4), 2019 (2014)

    Article  ADS  Google Scholar 

  23. V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, High-mobility field-effect transistors based on transition metal dichalcogenides, Appl. Phys. Lett. 84(17), 3301 (2004)

    Article  ADS  Google Scholar 

  24. Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, Ambipolar MoS2 thin flake transistors, Nano Lett. 12(3), 1136 (2012)

    Article  ADS  Google Scholar 

  25. D. Braga, I. G. Lezama, H. Berger, and A. F. Morpurgo, Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors, Nano Lett. 12(10), 5218 (2012)

    Article  ADS  Google Scholar 

  26. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10(4), 1271 (2010)

    Article  ADS  Google Scholar 

  27. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  28. A. Kumar, and P. K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors, Eur. Phys. J. B 85(6), 186 (2012)

    Article  ADS  Google Scholar 

  29. Y. Chen, J. Xi, D. O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y. S. Huang, and L. Xie, Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys, ACS Nano 7(5), 4610 (2013)

    Article  Google Scholar 

  30. H. Terrones, F. Lopez-Urias, and M. Terrones, Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides, Sci. Rep. 3(1), 1549 (2013)

    Article  ADS  Google Scholar 

  31. Y. Zhang, M. Jeon, L. J. Rich, H. Hong, J. Geng, Y. Zhang, S. Shi, T. E. Barnhart, P. Alexandridis, J. D. Huizinga, M. Seshadri, W. Cai, C. Kim, and J. F. Lovell, Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines, Nat. Nanotechnol. 9(8), 631 (2014)

    Article  ADS  Google Scholar 

  32. A. K. Geim and K. S. Novoselov, The rise and rise of graphene, Nat. Nanotechnol. 5(11), 755 (2010)

    Article  Google Scholar 

  33. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887), 385 (2008)

    Article  ADS  Google Scholar 

  34. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rcv. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  35. L. Song, L. J. Ci, H. Lu, P. B. Sorokin, C. H. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett. 10(8), 3209 (2010)

    Article  ADS  Google Scholar 

  36. J. C. Zheng, L. Zhang, A. V. Kretinin, S. V. Morozov, Y. B. Wang, T. Wang, X. J. Li, F. Ren, J. Y. Zhang, C. Y. Lu, J. C. Chen, M. Lu, H. Q. Wang, A. K. Geim, and K. S. Novoselov, High thermal conductivity of hexagonal boron nitride laminates, 2D Mater. 3, 011004 (2016)

    Article  Google Scholar 

  37. L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. B. Zhang, Black phosphorus field-effect transistors, Nat. Nanotechnol. 9(5), 372 (2014)

    Article  ADS  Google Scholar 

  38. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol. 10(3), 227 (2015)

    Article  ADS  Google Scholar 

  39. S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene, Small 11(6), 640 (2015)

    Article  Google Scholar 

  40. Z. Q. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)

    Article  ADS  Google Scholar 

  41. W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, and S. P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability, Chem. Rev. 116(12), 7159 (2016)

    Article  Google Scholar 

  42. J. B. Pang, R. G. Mendes, A. Bachmatiuk, L. Zhao, H. Q. Ta, T. Gemming, H. Liu, Z. F. Liu, and M. H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems, Chem. Soc. Rev. 48(1), 72 (2019)

    Article  Google Scholar 

  43. K. Khan, A. K. Tareen, M. Aslam, Y. P. Zhang, R. H. Wang, Z. B. Ouyang, Z. Y. Gou, and H. Zhang, Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications, Nanoscale 11(45), 21622 (2019)

    Article  Google Scholar 

  44. X. L. Chen, Z. S. Zhou, B. C. Deng, Z. F. Wu, F. N. Xia, Y. Cao, L. Zhang, W. Huang, N. Wang, and L. Wang, Electrically tunable physical properties of two-dimensional materials, Nano Today 27, 99 (2019)

    Article  Google Scholar 

  45. Y. Liu, N. O. Weiss, X. D. Duan, H. C. Cheng, Y. Huang, and X. F. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)

    Article  ADS  Google Scholar 

  46. C. S. Liu, H. W. Chen, S. Y. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, and P. Zhou, Two-dimensional materials for next-generation computing technologies, Nat. Nanotechnol. 15(7), 545 (2020)

    Article  ADS  Google Scholar 

  47. K. Kang, S. E. Xie, L. J. Huang, Y. M. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity, Nature 520(7549), 656 (2015)

    Article  ADS  Google Scholar 

  48. C. Chang, W. Chen, Y. Chen, Y. H. Chen, Y. Chen, et al., Recent progress on two-dimensional materials, Acta Phys. — Chim. Sin. 37(12), 2108017 (2021)

    Article  Google Scholar 

  49. S. Keskin, D. Kayrak-Talay, U. Akman, and O. Hortacsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids 43(1), 150 (2007)

    Article  Google Scholar 

  50. A. Shariati and C. J. Peters, High-pressure phase equilibria of systems with ionic liquids, J. Supercrit. Fluids 34(2), 171 (2005)

    Article  Google Scholar 

  51. J. F. Brennecke and E. J. Maginn, Ionic liquids: Innovative fluids for chemical processing, AIChE J. 47(11), 2384 (2001)

    Article  ADS  Google Scholar 

  52. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science 331(6017), 568 (2011)

    Article  ADS  Google Scholar 

  53. S. Xu, D. Li, and P. Wu, One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction, Adv. Funct. Mater. 25(7), 1127 (2015)

    Article  Google Scholar 

  54. Y. Chen, C. Tan, H. Zhang, and L. Wang, Two-dimensional graphene analogues for biomedical applications, Chem. Soc. Rev. 44(9), 2681 (2015)

    Article  Google Scholar 

  55. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  56. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Photodetectors based on graphene, other two-dimensional materials and hybrid systems, Nat. Nanotechnol. 9(10), 780 (2014)

    Article  ADS  Google Scholar 

  57. W. Luo, Y. Wang, E. Hitz, Y. Lin, B. Yang, and L. Hu, Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications, Adv. Funct. Mater. 27(31), 1701450 (2017)

    Article  Google Scholar 

  58. X. Wang, H. Feng, Y. Wu, and L. Jiao, Controlled synthesis of highly crystalline mos2 flakes by chemical vapor deposition, J. Am. Chem. Soc. 135(14), 5304 (2013)

    Article  Google Scholar 

  59. W. Xing, Y. Chen, X. Wu, X. Xu, P. Ye, T. Zhu, Q. Guo, L. Yang, W. Li, and H. Huang, PEDOT: PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells, Adv. Funct. Mater. 27(32), 1701622 (2017)

    Article  Google Scholar 

  60. M. Yi and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3(22), 11700 (2015)

    Article  Google Scholar 

  61. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3(9), 563 (2008)

    Article  ADS  Google Scholar 

  62. L. Niu, J. N. Coleman, H. Zhang, H. Shin, M. Chhowalla, and Z. Zheng, Production of two-dimensional nanomaterials via liquid-based direct exfoliation, Small 12(3), 272 (2016)

    Article  Google Scholar 

  63. H. Tao, Y. Zhang, Y. Gao, Z. Sun, C. Yan, and J. Texter, Scalable exfoliation and dispersion of two-dimensional materials — an update, Phys. Chem. Chem. Phys. 19(2), 921 (2017)

    Article  Google Scholar 

  64. X. Feng, W. Xing, H. Yang, B. Yuan, L. Song, Y. Hu, and K. M. Liew, High-performance poly(ethylene oxide) /molybdenum disulfide nanocomposite films: Reinforcement of properties based on the gradient interface effect, ACS Appl. Mater. Interfaces 7(24), 13164 (2015)

    Article  Google Scholar 

  65. R. D. Rogers, Reflections on ionic liquids, Nature 447(7147), 917 (2007)

    Article  ADS  Google Scholar 

  66. W. Li and P. Wu, Unusual thermal phase transition behavior of an ionic liquid and poly(ionic liquid) in water with significantly different LCST and dynamic mechanism, Polym. Chem. 5(19), 5578 (2014)

    Article  Google Scholar 

  67. T. Morishita, H. Okamoto, Y. Katagiri, M. Matsushita, and K. Fukumori, A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation, Chem. Commun. (Camb.) 51(60), 12068 (2015)

    Article  Google Scholar 

  68. M. Matsumoto, Y. Saito, C. Park, T. Fukushima, and T. Aida, Ultrahigh-throughput exfoliation of graphite into pristine “single-layer” graphene using microwaves and molecularly engineered ionic liquids, Nat. Chem. 7(9), 730 (2015)

    Article  Google Scholar 

  69. W. C. Du, X. Q. Jiang, and L. H. Zhu, From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and few-layered pristine graphene, J. Mater. Chem. A 1(36), 10592 (2013)

    Article  Google Scholar 

  70. D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas, and A. Mariani, High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid, J. Mater. Chem. 21(10), 3428 (2011)

    Article  Google Scholar 

  71. E. Bordes, B. Morcos, D. Bourgogne, J. M. Andanson, P. O. Bussière, C. C. Santini, A. Benayad, M. C. Gomes, and A. A. H. Pádua, Dispersion and stabilization of exfoliated graphene in ionic liquids, Front Chem. 7, 223 (2019)

    Article  ADS  Google Scholar 

  72. X. G. Gu, Y. Zhao, K. Sun, C. L. Z. Vieira, Z. J. Jia, C. Cui, Z. J. Wang, A. Walsh, and S. D. Huang, Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene, Ultrason. Sonochem. 58, 104630 (2019)

    Article  Google Scholar 

  73. J. Restolho, J. L. Mata, and B. Saramago, On the interfacial behavior of ionic liquids: Surface tensions and contact angles, J. Colloid Interface Sci. 340(1), 82 (2009)

    Article  ADS  Google Scholar 

  74. J. A. Harnisch and M. D. Porter, Electrochemically modulated liquid chromatography: An electrochemical strategy for manipulating chromatographic retention, Analyst (Lond.) 126(11), 1841 (2001)

    Article  ADS  Google Scholar 

  75. S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, J. Chem. Phys. 126(8), 084704 (2007)

    Article  ADS  Google Scholar 

  76. X. Q. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith, R. R. Unocic, S. M. Mahurin, M. F. Chi, and S. Dai, Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids, Chem. Commun. (Camb.) 46(25), 4487 (2010)

    Article  Google Scholar 

  77. H. Beneš, R. K. Donato, P. Ecorchard, D. Popelkova, E. Pavlova, D. Schelonka, O. Pop-Georgievski, H. S. Schrekker, and V. Stengl, Direct delamination of graphite ore into defect-free graphene using a biphasic solvent system under pressurized ultrasound, RSC Adv. 6(8), 6008 (2016)

    Article  ADS  Google Scholar 

  78. A. Winchester, S. Ghosh, S. M. Feng, A. L. Elias, T. Mallouk, M. Terrones, and S. Talapatra, Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide, ACS Appl. Mater. Interfaces 6(3), 2125 (2014)

    Article  Google Scholar 

  79. Y. Biswas, M. Dule, and T. K. Mandal, Poly(ionic liquid)-promoted solvent-borne efficient exfoliation of MoS2/MoSe2 nanosheets for dual-responsive dispersion and polymer nanocomposites, J. Phys. Chem. C 121(8), 4747 (2017)

    Article  Google Scholar 

  80. G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low, C. P. Teng, I. Y. Phang, Y. Cheng, K. L. Duei, B. M. Srinivasan, Y. Zheng, Y. W. Zhang, and M. Y. Han, Protein induces layer-by-layer exfoliation of transition metal dichalcogenides, J. Am. Chem. Soc. 137, 6152 (2015)

    Article  Google Scholar 

  81. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Adv. Mater. 23, 3944 (2011)

    Article  Google Scholar 

  82. Z. Lei, Y. Zhou, and P. Wu, Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare “smart” nanocomposite hydrogels with tunable dual stimuli-responsive behavior, Small 12(23), 3112 (2016)

    Article  Google Scholar 

  83. X. W. Wang and P. Y. Wu, Aqueous phase exfoliation of two-dimensional materials assisted by thermoresponsive polymeric ionic liquid and their applications in stimuli-responsive hydrogels and highly thermally conductive films, ACS Appl. Mater. Interfaces 10(3), 2504 (2018)

    Article  Google Scholar 

  84. R. Tian, X. Jia, J. Yang, Y. Li, and H. Song, Large-scale, green, and high-efficiency exfoliation and noncovalent functionalization of fluorinated graphene by ionic liquid crystal, Chem. Eng. J. 395, 125104 (2020)

    Article  Google Scholar 

  85. R. Gusain, H. P. Mungse, N. Kumar, T. R. Ravindran, R. Pandian, H. Sugimura, and O. P. Khatri, Covalently attached graphene-ionic liquid hybrid nanomaterials: Synthesis, characterization and tribological application, J. Mater. Chem. A 4(3), 926 (2016)

    Article  Google Scholar 

  86. M. Li, A. S. Westover, R. Carter, L. Oakes, N. Muralidharan, T. C. Boire, H. J. Sung, and C. L. Pint, Noncovalent Pi—Pi stacking at the carbon electrolyte interface: Controlling the voltage window of electrochemical supercapacitors, ACS Appl. Mater. Interfaces 8(30), 19558 (2016)

    Article  Google Scholar 

  87. W. Song, J. Yan, and H. Ji, Tribological performance of an imidazolium ionic liquid-functionalized SiO2@graphene oxide as an additive, ACS Appl. Mater. Interfaces 13(42), 50573 (2021)

    Article  Google Scholar 

  88. R. Tian, X. Jia, M. Lan, S. Wang, Y. Li, J. Yang, D. Shao, L. Feng, Q. Su, and H. Song, Ionic liquid crystals confining ultrathin MoS2 nanosheets: A high-concentration and stable aqueous dispersion, ACS Sustain. Chem. & Eng. 10(13), 4186 (2022)

    Article  Google Scholar 

  89. N. G. Shang, P. Papakonstantinou, S. Sharma, G. Lubarsky, M. X. Li, D. W. McNeill, A. J. Quinn, W. Z. Zhou, and R. Blackley, Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding, Chem. Commun. (Camb.) 48(13), 1877 (2012)

    Article  Google Scholar 

  90. W. T. Zhang, Y. R. Wang, D. H. Zhang, S. X. Yu, W. X. Zhu, J. Wang, F. Q. Zheng, S. X. Wang, and J. L. Wang, A one-step approach to the large-scale synthesis of functionalized MoS2 nanosheets by ionic liquid assisted grinding, Nanoscale 7(22), 10210 (2015)

    Article  ADS  Google Scholar 

  91. S. Z. Bisri, S. Shimizu, M. Nakano, and Y. Iwasa, Endeavor of iontronics: From fundamentals to applications of ion-controlled electronics, Adv. Mater. 29(25), 1607054 (2017)

    Article  Google Scholar 

  92. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids, Adv. Funct. Mater. 19(7), 1046 (2009)

    Article  Google Scholar 

  93. S. Ono, N. Minder, Z. Chen, A. Facchetti, and A. F. Morpurgo, High-performance n-type organic field-effect transistors with ionic liquid gates, Appl. Phys. Lett. 97(14), 143307 (2010)

    Article  ADS  Google Scholar 

  94. K. Hong, S. H. Kim, K. H. Lee, and C. D. Frisbie, Printed, sub-2V ZnO electrolyte gated transistors and inverters on plastic, Adv. Mater. 25(25), 3413 (2013)

    Article  Google Scholar 

  95. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Electric-field-induced superconductivity in an insulator, Nat. Mater. 7(11), 855 (2008)

    Article  ADS  Google Scholar 

  96. J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H. Shimotani, and Y. Iwasa, Liquid-gated interface superconductivity on an atomically flat film, Nat. Mater. 9(2), 125 (2010)

    Article  ADS  Google Scholar 

  97. K. Ueno, S. Nakamura, H. Shimotani, H. T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Discovery of superconductivity in KTaO3 by electrostatic carrier doping, Nat. Nanotechnol. 6(7), 408 (2011)

    Article  ADS  Google Scholar 

  98. J. Ye, M. F. Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A. F. Morpurgo, and Y. Iwasa, Accessing the transport properties of graphene and its multilayers at high carrier density, Proc. Natl. Acad. Sci. USA 108(32), 13002 (2011)

    Article  ADS  Google Scholar 

  99. A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, and I. Bozovic, Superconductor—insulator transition in La2−xSrxCuO4 at the pair quantum resistance, Nature 472(7344), 458 (2011)

    Article  ADS  Google Scholar 

  100. Y. Saito, Y. Nakamura, M. S. Bahramy, Y. Kohama, J. Ye, Y. Kasahara, Y. Nakagawa, M. Onga, M. Tokunaga, T. Nojima, Y. Yanase, Y. Iwasa, Superconductivity protected by spin-valley locking in ion-gated MoS2, Nat. Phys. 12, 144 (2016)

    Article  Google Scholar 

  101. Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y. H. Cho, L. Ma, X. Niu, S. Kim, Y. W. Son, D. Feng, S. Li, S. W. Cheong, X. H. Chen, and Y. Zhang, Gate-tunable phase transitions in thin flakes of 1T-TaS2, Nat. Nanotechnol. 10(3), 270 (2015)

    Article  ADS  Google Scholar 

  102. Y. Saito, T. Nojima, and Y. Iwasa, Gate-induced superconductivity in two-dimensional atomic crystals, Supercond. Sci. Technol. 29(9), 093001 (2016)

    Article  ADS  Google Scholar 

  103. Y. C. Wu, D. F. Li, C. L. Wu, H. Y. Hwang, and Y. Cui, Electrostatic gating and intercalation in 2D materials, Nat. Rev. Mater. (2022)

  104. L. Liu, J. Han, L. Xu, J. Zhou, C. Zhao, S. Ding, H. Shi, M. Xiao, L. Ding, Z. Ma, C. Jin, Z. Zhang, and L. M. Peng, Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics, Science 368 (2020) 850

    Article  ADS  Google Scholar 

  105. I. G. Lezama, A. Ubaldini, M. Longobardi, E. Giannini, C. Renner, A. B. Kuzmenko, and A. F. Morpurgo, Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals, 2D Mater. 1, 021002 (2014)

    Article  Google Scholar 

  106. F. L. Wang, P. Stepanov, M. Gray, C. N. Lau, M. E. Itkis, and R. C. Haddon, Ionic liquid gating of suspended MoS2 field effect transistor devices, Nano Lett. 15(8), 5284 (2015)

    Article  ADS  Google Scholar 

  107. W. Shi, J. T. Ye, Y. J. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito, and Y. Iwasa, Superconductivity series in transition metal dichalcogenides by ionic gating, Sci. Rep. 5(1), 12534 (2015)

    Article  ADS  Google Scholar 

  108. S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Band offset and negative compressibility in graphene—MoS2 heterostructures, Nano Lett. 14(4), 2039 (2014)

    Article  ADS  Google Scholar 

  109. G. Dezi, N. Scopigno, S. Caprara, and M. Grilli, Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors, Phys. Rev. B 98(21), 214507 (2018)

    Article  ADS  Google Scholar 

  110. M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal, H. Ryu, M. T. Edmonds, H. Z. Tsai, A. Riss, S. K. Mo, D. Lee, A. Zettl, Z. Hussain, Z. X. Shen, and M. F. Crommie, Characterization of collective ground states in single-layer NbSe2, Nat. Phys. 12(1), 92 (2016)

    Article  Google Scholar 

  111. A. W. Tsen, B. Hunt, Y. D. Kim, Z. J. Yuan, S. Jia, R. J. Cava, J. Hone, P. Kim, C. R. Dean, and A. N. Pasupathy, Nature of the quantum metal in a two-dimensional crystalline superconductor, Nat. Phys. 12, 208 (2016)

    Article  Google Scholar 

  112. X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forro, J. Shan, and K. F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2, Nat. Nanotechnol. 10, 765 (2015)

    Article  ADS  Google Scholar 

  113. X. Xi, H. Berger, L. Forro, J. Shan, and K. F. Mak, Gate tuning of electronic phase transitions in two-dimensional NbSe2, Phys. Rev. Lett. 117(10), 106801 (2016)

    Article  ADS  Google Scholar 

  114. Y. Chen, W. Xing, X. Wang, B. Shen, W. Yuan, T. Su, Y. Ma, Y. Yao, J. Zhong, Y. Yun, X. C. Xie, S. Jia, and W. Han, Role of oxygen in ionic liquid gating on two-dimensional Cr2Ge2Te6: A non-oxide material, ACS Appl. Mater. Interfaces 10(1), 1383 (2018)

    Article  Google Scholar 

  115. C. Y. Cheng, W. L. Pai, Y. H. Chen, N. T. Paylaga, P. Y. Wu, C. W. Chen, C. T. Liang, F. C. Chou, R. Sankar, M. S. Fuhrer, S. Y. Chen, and W. H. Wang, Phase modulation of self-gating in ionic liquid-functionalized InSe field-effect transistors, Nano Lett. 22(6), 2270 (2022)

    Article  ADS  Google Scholar 

  116. T. Xu, H. Du, H. Liu, W. Liu, X. Zhang, C. Si, P. Liu, and K. Zhang, Advanced nanocellulose-based composites for flexible functional energy storage devices, Adv. Mater. 33(48), 2101368 (2021)

    Article  Google Scholar 

  117. S. Alipoori, S. Mazinani, S. H. Aboutalebi, and F. Sharif, Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges, J. Energy Storage 27, 101072 (2020)

    Article  Google Scholar 

  118. D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, and C. A. Angell, Energy applications of ionic liquids, Energy Environ. Sci. 7(1), 232 (2014)

    Article  Google Scholar 

  119. Y. W. Chi, C. C. Hu, H. H. Shen, and K. P. Huang, New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping, Nano Lett. 16(9), 5719 (2016)

    Article  ADS  Google Scholar 

  120. A. Balducci, F. Soavi, and M. Mastragostino, The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors, Appl. Phys. A 82, 627 (2006)

    Article  ADS  Google Scholar 

  121. A. Balducci, W. A. Henderson, M. Mastragostino, S. Passerini, P. Simon, and F. Soavi, Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte, Electrochim. Acta 50(11), 2233 (2005)

    Article  Google Scholar 

  122. A. Balducci, U. Bardi, S. Caporali, M. Mastragostino, and F. Soavi, Ionic liquids for hybrid supercapacitors, Electrochem. Commun. 6(6), 566 (2004)

    Article  Google Scholar 

  123. M. Mastragostino and F. Soavi, Strategies for high-performance supercapacitors for HEV, J. Power Sources 174(1), 89 (2007)

    Article  ADS  Google Scholar 

  124. M. Galiński, A. Lewandowski, and I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta 51(26), 5567 (2006)

    Article  Google Scholar 

  125. A. Lewandowski and M. Galinski, Carbon-ionic liquid double-layer capacitors, J. Phys. Chem. Solids 65(2–3), 281 (2004)

    Article  ADS  Google Scholar 

  126. A. Balducci, R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, and S. Passerini, High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte, J. Power Sources 165(2), 922 (2007)

    Article  ADS  Google Scholar 

  127. C. Arbizzani, S. Beninati, M. Lazzari, F. Soavi, and M. Mastragostino, Electrode materials for ionic liquid-based supercapacitors, J. Power Sources 174(2), 648 (2007)

    Article  ADS  Google Scholar 

  128. A. Eftekhari, Supercapacitors utilising ionic liquids, Energy Storage Mater. 9, 47 (2017)

    Article  Google Scholar 

  129. R. Y. Lin, P. L. Taberna, S. Fantini, V. Presser, C. R. Perez, F. Malbosc, N. L. Rupesinghe, K. B. K. Teo, Y. Gogotsi, and P. Simon, Capacitive energy storage from −50 to 100 °C using an ionic liquid electrolyte, J. Phys. Chem. Lett. 2(19), 2396 (2011)

    Article  Google Scholar 

  130. M. Kunze, S. Jeong, G. B. Appetecchi, M. Schöenhoff, M. Winter, and S. Passerini, Mixtures of ionic liquids for low temperature electrolytes, Electrochim. Acta 82, 69 (2012)

    Article  Google Scholar 

  131. W. Y. Tsai, R. Lin, S. Murali, L. L. Zhang, J. K. McDonough, R. S. Ruoff, P. L. Taberna, Y. Gogotsi, and P. Simon, Outstanding performance of activated graphene based supercapacitors in ionic liquid electrolyte from −50 to 80 °C, Nano Energy 2(3), 403 (2013)

    Article  Google Scholar 

  132. C. Lethien, J. Le Bideau, and T. Brousse, Challenges and prospects of 3D micro-supercapacitors for powering the internet of things, Energy Environ. Sci. 12(1), 96 (2019)

    Article  Google Scholar 

  133. Z. Yang, J. Tian, Z. Yin, C. Cui, W. Qian, and F. Wei, Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review, Carbon 141, 467 (2019)

    Article  Google Scholar 

  134. C. Cui, W. Qian, Y. Yu, C. Kong, B. Yu, L. Xiang, and F. Wei, Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V, J. Am. Chem. Soc. 136(6), 2256 (2014)

    Article  Google Scholar 

  135. Y. Yu, C. Cui, W. Qian, and F. Wei, Full capacitance potential of SWCNT electrode in ionic liquids at 4 V, J. Mater. Chem. A 2(46), 19897 (2014)

    Article  Google Scholar 

  136. M. Lazzari, M. Mastragostino, and F. Soavi, Capacitance response of carbons in solvent-free ionic liquid electrolytes, Electrochem. Commun. 9(7), 1567 (2007)

    Article  Google Scholar 

  137. D. R. MacFarlane, P. Meakin, J. Sun, N. Amini, and M. Forsyth, Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases, J. Phys. Chem. B 103(20), 4164 (1999)

    Article  Google Scholar 

  138. W. A. Henderson and S. Passerini, Phase behavior of ionic liquid-LiX mixtures: Pyrrolidinium cations and TFSI- anions, Chem. Mater. 16(15), 2881 (2004)

    Article  Google Scholar 

  139. Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M. S. Islam, X. Lu, L. Dai, R. Amal, C. H. Wang, and Z. Han, Two-birds-one-stone: Multifunctional supercapacitors beyond traditional energy storage, Energy Environ. Sci. 14(4), 1854 (2021)

    Article  Google Scholar 

  140. G. Lota, K. Fic, and E. Frackowiak, Carbon nanotubes and their composites in electrochemical applications, Energy Environ. Sci. 4(5), 1592 (2011)

    Article  Google Scholar 

  141. M. F. El-Kady, Y. L. Shao, and R. B. Kaner, Graphene for batteries, supercapacitors and beyond, Nat. Rev. Mater. 1(7), 16033 (2016)

    Article  ADS  Google Scholar 

  142. A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157(1), 11 (2006)

    Article  ADS  Google Scholar 

  143. L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A. Thomas, and L. Zhi, Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors, J. Am. Chem. Soc. 137(1), 219 (2015)

    Article  Google Scholar 

  144. Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, Carbon-based supercapacitors produced by activation of graphene, Science 332(6037), 1537 (2011)

    Article  ADS  Google Scholar 

  145. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc. 130, 2730 (2008)

    Article  Google Scholar 

  146. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science 313(5794), 1760 (2006)

    Article  ADS  Google Scholar 

  147. C. Zheng, W. Z. Qian, C. J. Cui, Q. Zhang, Y. G. Jin, M. Q. Zhao, P. H. Tan, and F. Wei, Hierarchical carbon nanotube membrane with high packing density and tunable porous structure for high voltage supercapacitors, Carbon 50(14), 5167 (2012)

    Article  Google Scholar 

  148. Y. S. Yun, S. Y. Cho, J. Shim, B. H. Kim, S. J. Chang, S. J. Baek, Y. S. Huh, Y. Tak, Y. W. Park, S. Park, and H. J. Jin, Microporous carbon nanoplates from regenerated silk proteins for supercapacitors, Adv. Mater. 25(14), 1993 (2013)

    Article  Google Scholar 

  149. Z. B. Lei, Z. H. Liu, H. J. Wang, X. X. Sun, L. Lu, and X. S. Zhao, A high-energy-density supercapacitor with graphene-CMK-5 as the electrode and ionic liquid as the electrolyte, J. Mater. Chem. A 1(6), 2313 (2013)

    Article  Google Scholar 

  150. T. Kim, H. C. Kang, T. Tran Thanh, J. D. Lee, H. Kim, W. S. Yang, H. G. Yoon, and K. S. Suh, Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors, RSC Adv. 2(23), 8808 (2012)

    Article  ADS  Google Scholar 

  151. H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King’ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, and D. Mitlin, Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy, ACS Nano 7(6), 5131 (2013)

    Article  Google Scholar 

  152. L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, and R. S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors, Nano Lett. 12(4), 1806 (2012)

    Article  ADS  Google Scholar 

  153. N. Jung, S. Kwon, D. Lee, D. M. Yoon, Y. M. Park, A. Benayad, J. Y. Choi, and J. S. Park, Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors, Adv. Mater. 25(47), 6854 (2013)

    Article  Google Scholar 

  154. G. P. Hao, A. H. Lu, W. Dong, Z. Y. Jin, X. Q. Zhang, J. T. Zhang, and W. C. Li, Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance, Adv. Energy Mater. 3(11), 1421 (2013)

    Article  Google Scholar 

  155. T. Brousse, D. Belanger, and J. W. Long, To be or not to be pseudocapacitive, J. Electrochem. Soc. 162(5), A5185 (2015)

    Article  Google Scholar 

  156. P. Simon, Y. Gogotsi, and B. Dunn, Where do batteries end and supercapacitors begin, Science 343(6176), 1210 (2014)

    Article  ADS  Google Scholar 

  157. B. E. Conway, Transition from supercapacitor to battery behavior in electrochemical energy-storage, J. Electrochem. Soc. 138(6), 1539 (1991)

    Article  ADS  Google Scholar 

  158. E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi, A. Vioux, S. A. Freunberger, F. Favier, O. Fontaine, Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors, Nat. Mater. 16, 446 (2017)

    Article  ADS  Google Scholar 

  159. P. Simon and Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater. 19(11), 1151 (2020)

    Article  ADS  Google Scholar 

  160. Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A 2(31), 12104 (2014)

    Article  Google Scholar 

  161. M. K. Aslam, Y. B. Niu, and M. W. Xu, MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors, Adv. Energy Mater. 11(2), 2000681 (2021)

    Article  Google Scholar 

  162. A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39(4), 507 (2001)

    Article  Google Scholar 

  163. J. Wang, B. Ding, Y. Xu, L. Shen, H. Dou, and X. Zhang, Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances, ACS Appl. Mater. Interfaces 7(40), 22284 (2015)

    Article  Google Scholar 

  164. X. Yang, C. Cheng, Y. Wang, L. Qiu, and D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage, Science 341(6145), 534 (2013)

    Article  ADS  Google Scholar 

  165. R. Futamura, T. Iiyama, Y. Takasaki, Y. Gogotsi, M. J. Biggs, M. Salanne, J. Segalini, P. Simon, K. Kaneko, Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores, Nat. Mater. 16, 1225 (2017)

    Article  ADS  Google Scholar 

  166. Z. N. Li, S. Gadipelli, H. C. Li, C. A. Howard, D. J. L. Brett, P. R. Shearing, Z. X. Guo, I. P. Parkin, and F. Li, Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage, Nat. Energy 5(2), 160 (2020)

    Article  ADS  Google Scholar 

  167. C. Cheng, G. Jiang, G. P. Simon, J. Z. Liu, and D. Li, Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes, Nat. Nanotechnol. 13, 685 (2018)

    Article  ADS  Google Scholar 

  168. X. L. Su, C. R. Ye, X. P. Li, M. H. Guo, R. G. Cao, K. Ni, and Y. W. Zhu, Heterogeneous stacking carbon films for optimized supercapacitor performance, Energy Storage Mater. 50, 365 (2022)

    Article  Google Scholar 

  169. J. Kim and S. Kim, Preparation and electrochemical property of ionic liquid-attached graphene nanosheets for an application of supercapacitor electrode, Electrochim. Acta 119, 11 (2014)

    Article  Google Scholar 

  170. J. Kim and S. Kim, Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties, Appl. Surf. Sci. 295, 31 (2014)

    Article  ADS  Google Scholar 

  171. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. C. Hosler, L. Hultman, P. R. C. Kent, Y. Gogotsi, and M. W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes), ACS Nano 9(10), 9507 (2015)

    Article  Google Scholar 

  172. Q. Hu, D. Sun, Q. Wu, H. Wang, L. Wang, B. Liu, A. Zhou, and J. He, MXene: A new family of promising hydrogen storage medium, J. Phys. Chem. A 117(51), 14253 (2013)

    Article  Google Scholar 

  173. Y. Dong, S. Zheng, J. Qin, X. Zhao, H. Shi, X. Wang, J. Chen, and Z. S. Wu, All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries, ACS Nano 12(3), 2381 (2018)

    Article  Google Scholar 

  174. M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall’Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science 341(6153), 1502 (2013)

    Article  ADS  Google Scholar 

  175. A. VahidMohammadi, J. Moncada, H. Chen, E. Kayali, J. Orangi, C. A. Carrero, and M. Beidaghi, Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance, J. Mater. Chem. A 6(44), 22123 (2018)

    Article  Google Scholar 

  176. M. Lu, H. J. Li, W. J. Han, J. N. Chen, W. Shi, J. H. Wang, X. M. Meng, J. G. Qi, H. B. Li, B. S. Zhang, W. Zhang, and W. Zheng, 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries, J. Energy Chem. 31, 148 (2019)

    Article  Google Scholar 

  177. F. Wu, Y. Jiang, Z. Q. Ye, Y. X. Huang, Z. H. Wang, S. J. Li, Y. Mei, M. Xie, L. Li, and R. J. Chen, A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries, J. Mater. Chem. A 7(3), 1315 (2019)

    Article  Google Scholar 

  178. Y. Xia, T. S. Mathis, M. Q. Zhao, B. Anasori, A. Dang, Z. H. Zhou, H. Cho, Y. Gogotsi, and S. Yang, Thickness — independent capacitance of vertically aligned liquid-crystalline MXenes, Nature 557, 409 (2018)

    Article  ADS  Google Scholar 

  179. C. F. Zhang, M. P. Kremer, A. Seral-Ascaso, S. H. Park, N. McEvoy, B. Anasori, Y. Gogotsi, and V. Nicolosi, Stamping of flexible, coplanar micro-supercapacitors using MXene inks, Adv. Funct. Mater. 28(9), 1705506 (2018)

    Article  Google Scholar 

  180. S. Xu, Y. Dall’Agnese, G. Wei, C. Zhang, Y. Gogotsi, and W. Han, Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors, Nano Energy 50, 479 (2018)

    Article  Google Scholar 

  181. Z. Lin, D. Barbara, P. L. Taberna, K. L. Van Aken, B. Anasori, Y. Gogotsi, and P. Simon, Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte, J. Power Sources 326, 575 (2016)

    Article  ADS  Google Scholar 

  182. Z. F. Lin, P. Rozier, B. Duployer, P. L. Taberna, B. Anasori, Y. Gogotsi, and P. Simon, Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte, Electrochem. Commun. 72, 50 (2016)

    Article  Google Scholar 

  183. S. H. Zheng, C. Zhang, F. Zhou, Y. F. Dong, X. Y. Shi, V. Nicolosi, Z. S. Wu, and X. H. Bao, Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density, J. Mater. Chem. A 7(16), 9478 (2019)

    Article  Google Scholar 

  184. O. D. Bakulina, M. Y. Ivanov, S. A. Prikhod’ko, S. Pylaeva, I. V. Zaytseva, N. V. Surovtsev, N. Y. Adonin, and M. V. Fedin, Nanocage formation and structural anomalies in imidazolium ionic liquid glasses governed by alkyl chains of cations, Nanoscale 12(38), 19982 (2020)

    Article  Google Scholar 

  185. K. Liang, R. A. Matsumoto, W. Zhao, N. C. Osti, I. Popov, B. P. Thapaliya, S. Fleischmann, S. Misra, K. Prenger, M. Tyagi, E. Mamontov, V. Augustyn, R. R. Unocic, A. P. Sokolov, S. Dai, P. T. Cummings, and M. Naguib, Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid, Adv. Funct. Mater. 31(33), 2104007 (2021)

    Article  Google Scholar 

  186. Q. Fan, R. Z. Zhao, M. J. Yi, P. Qi, C. X. Chai, H. Ying, and J. C. Hao, Ti3C2-MXene composite films functionalized with polypyrrole and ionic liquid-based microemulsion particles for supercapacitor applications, Chem. Eng. J. 428, 131107 (2022)

    Article  Google Scholar 

  187. Y. J. Wan, K. Rajavel, X. M. Li, X. Y. Wang, S. Y. Liao, Z. Q. Lin, P. L. Zhu, R. Sun, and C. P. Wong, Electromagnetic interference shielding of Ti3C2Tx MXene modified by ionic liquid for high chemical stability and excellent mechanical strength, Chem. Eng. J. 408, 127303 (2021)

    Article  Google Scholar 

  188. J. S. Lee, X. Q. Wang, H. M. Luo, G. A. Baker, and S. Dai, Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids, J. Am. Chem. Soc. 131, 4596 (2009)

    Article  Google Scholar 

  189. Y. Yoshida, K. Fujie, D. W. Lim, R. Ikeda, and H. Kitagawa, Superionic conduction over a wide temperature range in a metal-organic framework impregnated with ionic liquids, Angew. Chem. Int. Ed. 58(32), 10909 (2019)

    Article  Google Scholar 

  190. S. Bi, H. Banda, M. Chen, L. Niu, M. Chen, T. Wu, J. Wang, R. Wang, J. Feng, T. Chen, M. Dinca, A. A. Kornyshev, and G. Feng, Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes, Nat. Mater. 19, 552 (2020)

    Article  ADS  Google Scholar 

  191. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44(21), 7484 (2015)

    Article  Google Scholar 

  192. H. Yang, S. Kannappan, A. S. Pandian, J. H. Jang, Y. S. Lee, and W. Lu, Graphene supercapacitor with both high power and energy density, Nanotechnology 28(44), 445401 (2017)

    Article  ADS  Google Scholar 

  193. A. González, E. Goikolea, J. Andoni Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  Google Scholar 

  194. S. Pohlmann, R. S. Kühnel, T. A. Centeno, and A. Balducci, The influence of anion-cation combinations on the physicochemical properties of advanced electrolytes for supercapacitors and the capacitance of activated carbons, ChemElectroChem 1(8), 1301 (2014)

    Article  Google Scholar 

  195. K. L. Van Aken, M. Beidaghi, and Y. Gogotsi, Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors, Angew. Chem. Int. Ed. 54(16), 4806 (2015)

    Article  Google Scholar 

  196. S. Pohlmann, C. Ramirez-Castro, and A. Balducci, The influence of conductive salt ion selection on EDLC electrolyte characteristics and carbon-electrolyte interaction, J. Electrochem. Soc. 162(5), A5020 (2015)

    Article  Google Scholar 

  197. W. Q. Ye, H. Y. Wang, J. Q. Ning, Y. J. Zhong, and Y. Hu, New types of hybrid electrolytes for supercapacitors, J. Energy Chem. 57, 219 (2021)

    Article  Google Scholar 

  198. R. Hagiwara, K. Matsumoto, Y. Nakamori, T. Tsuda, Y. Ito, H. Matsumoto, and K. Momota, Physicochemical properties of 1, 3-dialkylimidazolium fluorohydrogenate room-temperature molten salts, J. Electrochem. Soc. 150(12), D195 (2003)

    Article  Google Scholar 

  199. C. Kong, W. Qian, C. Zheng, Y. Yu, C. Cui, and F. Wei, Raising the performance of a 4 V supercapacitor based on an EMIBF4-single walled carbon nanotube nanofluid electrolyte, Chem. Commun. (Camb.) 49(91), 10727 (2013)

    Article  Google Scholar 

  200. D. Yang, X. Zhou, R. X. Yang, Z. Yang, W. Yu, X. L. Wang, C. Li, S. Z. Liu, and R. P. H. Chang, Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells, Energy Environ. Sci. 9(10), 3071 (2016)

    Article  Google Scholar 

  201. S. Bai, P. M. Da, C. Li, Z. P. Wang, Z. C. Yuan, F. Fu, M. Kawecki, X. J. Liu, N. Sakai, J. T. W. Wang, S. Huettner, S. Buecheler, M. Fahlman, F. Gao, and H. J. Snaith, Planar perovskite solar cells with long-term stability using ionic liquid additives, Nature 571, 245 (2019)

    Article  ADS  Google Scholar 

  202. G. Divitini, S. Cacovich, F. Matteocci, L. Cina, A. Di Carlo, and C. Ducati, In situ observation of heat-induced degradation of perovskite solar cells, Nat. Energy 1(2), 15012 (2016)

    Article  ADS  Google Scholar 

  203. T. Leijtens, E. T. Hoke, G. Grancini, D. J. Slotcavage, G. E. Eperon, J. M. Ball, M. De Bastiani, A. R. Bowring, N. Martino, K. Wojciechowski, M. D. McGehee, H. J. Snaith, and A. Petrozza, Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films, Adv. Energy Mater. 5(20), 1500962 (2015)

    Article  Google Scholar 

  204. K. Domanski, B. Roose, T. Matsui, M. Saliba, S. H. Turren-Cruz, J. P. Correa-Baena, C. Roldan-Carmona, G. Richardson, J. M. Foster, F. De Angelis, J. M. Ball, A. Petrozza, N. Mine, M. K. Nazeeruddin, W. Tress, M. Grätzel, U. Steiner, A. Hagfeldt, and A. Abate, Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells, Energy Environ. Sci. 10(2), 604 (2017)

    Article  Google Scholar 

  205. X. J. Zhu, M. Y. Du, J. S. Feng, H. Wang, Z. Xu, L. K. Wang, S. N. Zuo, C. Y. Wang, Z. Y. Wang, C. Zhang, X. D. Ren, S. Priya, D. Yang, and S. Liu, High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport, Angew. Chem. Int. Ed. 60(8), 4238 (2021)

    Article  Google Scholar 

  206. X. Wang, X. Ran, X. Liu, H. Gu, S. Zuo, W. Hui, H. Lu, B. Sun, X. Gao, J. Zhang, Y. Xia, Y. Chen, and W. Huang, Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic, Angew. Chem. Int. Ed. 59(32), 13354 (2020)

    Article  Google Scholar 

  207. C. Liu, Z. Fang, J. S. Sun, Q. Lou, J. F. Ge, X. Chen, E. J. Zhou, M. H. Shang, W. Y. Yang, and Z. Y. Ge, Imidazolium ionic liquid as organic spacer for tuning the excitonic structure of 2D perovskite materials, ACS Energy Lett. 5(11), 3617 (2020)

    Article  Google Scholar 

  208. W. Hui, L. F. Chao, H. Lu, F. Xia, Q. Wei, et al., Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity, Science 371, 1359 (2021)

    Article  ADS  Google Scholar 

  209. A. K. Geim and I. V. Grigorieva, Van der Waals heterostructures, Nature 499(7459), 419 (2013)

    Article  Google Scholar 

  210. Y. F. Sun, S. Gao, and Y. Xie, Atomically-thick two-dimensional crystals: Electronic structure regulation and energy device construction, Chem. Soc. Rev. 43(2), 530 (2014)

    Article  Google Scholar 

  211. X. Huang, C. Tan, Z. Yin, and H. Zhang, 25th anniversary article: Hybrid nanostructures based on two-Dimensional nanomaterials, Adv. Mater. 26(14), 2185 (2014)

    Article  Google Scholar 

  212. Y. Sun, S. Gao, F. Lei, C. Xiao, and Y. Xie, Ultrathin two-dimensional inorganic materials: New opportunities for solid state nanochemistry, Acc. Chem. Res. 48(1), 3 (2015)

    Article  Google Scholar 

  213. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, and Y. Xie, Freestanding tin disulfide single-layers realizing efficient visible-light water splitting, Angew. Chem. Int. Ed. 51(35), 8727 (2012)

    Article  Google Scholar 

  214. J. Li, Y. Yu, and L. Zhang, Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis, Nanoscale 6(15), 8473 (2014)

    Article  ADS  Google Scholar 

  215. J. Jiang, K. Zhao, X. Xiao, and L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl Single-crystalline nanosheets, J. Am. Chem. Soc. 134(10), 4473 (2012)

    Article  Google Scholar 

  216. J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, and A. Zaleska-Medynska, Ionic liquids for nano- and microstructures preparation (Part 1): Properties and multifunctional role, Adv. Colloid Interface Sci. 230, 13 (2016)

    Article  Google Scholar 

  217. J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, and A. Zaleska-Medynska, Ionic liquids for nano- and microstructures preparation (Part 2): Application in synthesis, Adv. Colloid Interface Sci. 227, 1 (2016)

    Article  Google Scholar 

  218. L. Dou, Y. Xiang, J. Zhong, J. Li, and S. Huang, Ionic liquid-assisted preparation of thin Bi2SiO5 nanosheets for effective photocatalytic degradation of RhB, Mater. Lett. 261, 127117 (2020)

    Article  Google Scholar 

  219. J. Xia, M. Ji, J. Di, B. Wang, S. Yin, M. He, Q. Zhang, and H. Li, Improved photocatalytic activity of few-layer Bi4O5I2 nanosheets induced by efficient charge separation and lower valence position, J. Alloys Compd. 695, 922 (2017)

    Article  Google Scholar 

  220. J. H. Li, J. Ren, Y. J. Hao, E. P. Zhou, Y. Wang, X. J. Wang, R. Su, Y. Liu, X. H. Qi, and F. T. Li, Construction of beta-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position, J. Hazard. Mater. 401, 123262 (2021)

    Article  Google Scholar 

  221. M. K. Jana, K. Biswas, and C. N. R. Rao, Ionothermal synthesis of few-layer nanostructures of Bi2Se3 and related materials, Chemistry 19(28), 9110 (2013)

    Article  Google Scholar 

  222. J. Z. Zhao, M. X. Ji, J. Di, Y. P. Ge, P. F. Zhang, J. X. Xia, and H. M. Li, Synthesis of g-C3N4/Bi4O5Br2 via reactable ionic liquid and its cooperation effect for the enhanced photocatalytic behavior towards ciprofloxacin degradation, J. Photochem. Photobiol. A 347, 168 (2017)

    Article  Google Scholar 

  223. Q. Y. Zhu, Z. Y. Wang, L. F. Chen, H. Y. Cheng, and Z. W. Qi, Ionic-liquid-controlled two-dimensional monolayer Bi2MoO6 and its adsorption of azo molecules, ACS Appl. Nano Mater. 1(9), 5083 (2018)

    Article  Google Scholar 

  224. A. Pancielejko, J. Luczak, W. Lisowski, G. Trykowski, D. Venieri, A. Zaleska-Medynska, and P. Mazierski, Ionic liquid as morphology-directing agent of two-dimensional Bi2WO6: New insight into photocatalytic and antibacterial activity, Appl. Surf. Sci. 599, 153971 (2022)

    Article  Google Scholar 

  225. M. Peplow, Graphene booms in factories but lacks a killer app, Nature 522(7556), 268 (2015)

    Article  ADS  Google Scholar 

  226. S. Ravula, S. N. Baker, G. Kamath, and G. A. Baker, Ionic liquid-assisted exfoliation and dispersion: stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions, Nanoscale 7(10), 4338 (2015)

    Article  ADS  Google Scholar 

  227. J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids, ACS Nano 3(8), 2367 (2009)

    Article  Google Scholar 

  228. Y. Zhang, S. W. Li, Y. X. Xu, X. Y. Shi, M. X. Zhang, Y. N. Huang, Y. Liang, Y. Q. Chen, W. L. Ji, J. R. Kim, W. L. Song, D. G. Yu, and I. Kim, Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities, Nano Res. 15(6), 5556 (2022)

    Article  ADS  Google Scholar 

  229. S. Tajik, A. Lohrasbi-Nejad, P. Mohammadzadeh Jahani, M. B. Askari, P. Salarizadeh, and H. Beitollahi, Co-detection of carmoisine and tartrazine by carbon paste electrode modified with ionic liquid and MoO3/WO3 nanocomposite, J. Food Meas. Charact. 16(1), 722 (2022)

    Article  Google Scholar 

  230. F. G. Nejad, I. Sheikhshoaie, and H. Beitollahi, Simultaneous detection of carmoisine and tartrazine in food samples using GO-Fe3O4-PAMAM and ionic liquid based electrochemical sensor, Food Chem. Toxicol. 162, 112864 (2022)

    Article  Google Scholar 

  231. H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, M. Alizadeh, O. Karaman, Y. Vasseghian, and C. Karaman, Determination of D&C Red 33 and Patent Blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples, Food Chem. Toxicol. 162, 112907 (2022)

    Article  Google Scholar 

  232. M. Degani, Q. Z. An, M. Albaladejo-Siguan, Y. J. Hofstetter, C. Cho, F. Paulus, G. Grancini, and Y. Vaynzof, 23.7% efficient inverted perovskite solar cells by dual interfacial modification, Sci. Adv. 7(49), eabj7930 (2021)

    Article  ADS  Google Scholar 

  233. G. Zeng, W. J. Chen, X. B. Chen, Y. Hu, Y. Chen, B. Zhang, H. Y. Chen, W. W. Sun, Y. X. Shen, Y. W. Li, F. Yan, and Y. F. Li, Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes, J. Am. Chem. Soc. 144(19), 8658 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province of China (No. 2022J01007), the Fundamental Research Funds for Central Universities (Grant No. 20720210018), and the National Natural Science Foundation of China (No. 11704317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Wu or Hui-Qiong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sa, N., Wu, M. & Wang, HQ. Review of the role of ionic liquids in two-dimensional materials. Front. Phys. 18, 43601 (2023). https://doi.org/10.1007/s11467-023-1258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1258-6

Keywords

Navigation