Skip to main content
Log in

Online optimization for optical readout of a single electron spin in diamond

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The nitrogen-vacancy (NV) center in diamond has been developed as a promising platform for quantum sensing, especially for magnetic field measurements in the nano-tesla range with a nano-meter resolution. Optical spin readout performance has a direct effect on the signal-to-noise ratio (SNR) of experiments. In this work, we introduce an online optimization method to customize the laser waveform for readout. Both simulations and experiments reveal that our new scheme optimizes the optically detected magnetic resonance in NV center. The SNR of optical spin readout has been witnessed a 44.1% increase in experiments. In addition, we applied the scheme to the Rabi oscillation experiment, which shows an improvement of 46.0% in contrast and a reduction of 12.1% in mean deviation compared to traditional constant laser power SNR optimization. This scheme is promising to improve sensitivities for a wide range of NV-based applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions, Nature 455(7213), 648 (2008)

    Article  ADS  Google Scholar 

  2. I. Jakobi, P. Neumann, Y. Wang, D. B. R. Dasari, F. El Hallak, M. A. Bashir, M. Markham, A. Edmonds, D. Twitchen, and J. Wrachtrup, Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register, Nat. Nanotechnol. 12(1), 67 (2017)

    Article  ADS  Google Scholar 

  3. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, Nanoscale magnetic sensing with an individual electronic spin in diamond, Nature 455(7213), 644 (2008)

    Article  ADS  Google Scholar 

  4. S. Zaiser, T. Rendler, I. Jakobi, T. Wolf, S. Y. Lee, S. Wagner, V. Bergholm, T. Schulte-Herbrggen, P. Neumann, and J. Wrachtrup, Enhancing quantum sensing sensitivity by a quantum memory, Nat. Commun. 7(1), 12279 (2016)

    Article  ADS  Google Scholar 

  5. T. Unden, P. Balasubramanian, D. Louzon, Y. Vinkler, M. Plenio, M. Markham, D. Twitchen, A. Stacey, I. Lovchinsky, A. Sushkov, M. Lukin, A. Retzker, B. Naydenov, L. McGuinness, and F. Jelezko, Quantum metrology enhanced by repetitive quantum error correction, Phys. Rev. Lett. 116(23), 230502 (2016)

    Article  ADS  Google Scholar 

  6. C. L. Degen, Scanning magnetic field microscope with a diamond single-spin sensor, Appl. Phys. Lett. 92(24), 243111 (2008)

    Article  ADS  Google Scholar 

  7. J. Zhou, P. Wang, F. Shi, P. Huang, X. Kong, X. Xu, Q. Zhang, Z. Wang, X. Rong, and J. Du, Quantum information processing and metrology with color centers in diamonds, Front. Phys. 9(5), 587 (2014)

    Article  ADS  Google Scholar 

  8. F. Dolde, H. Fedder, M. W. Doherty, T. Nbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L. C. L. Hollenberg, F. Jelezko, and J. Wrachtrup, Electric-field sensing using single diamond spins, Nat. Phys. 7(6), 459 (2011)

    Article  Google Scholar 

  9. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, Nanometre-scale thermometry in a living cell, Nature 500(7460), 54 (2013)

    Article  ADS  Google Scholar 

  10. D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond, Proc. Natl. Acad. Sci. USA 110(21), 8417 (2013)

    Article  ADS  Google Scholar 

  11. S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart, F. Machado, B. Kobrin, T. O. Hhn, N. Z. Rui, M. Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V. V. Struzhkin, J. E. Moore, V. I. Levitas, R. Jeanloz, and N. Y. Yao, Imaging stress and magnetism at high pressures using a nanoscale quantum sensor, Science 366(6471), 1349 (2019)

    Article  ADS  Google Scholar 

  12. T. Staudacher, F. Shi, S. Pezzagna, J. Meijer, J. Du, C. A. Meriles, F. Reinhard, and J. Wrachtrup, Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume, Science 339(6119), 561 (2013)

    Article  ADS  Google Scholar 

  13. F. Shi, Q. Zhang, P. Wang, H. Sun, J. Wang, X. Rong, M. Chen, C. Ju, F. Reinhard, H. Chen, J. Wrachtrup, J. Wang, and J. Du, Single-protein spin resonance spectroscopy under ambient conditions, Science 347(6226), 1135 (2015)

    Article  ADS  Google Scholar 

  14. J. P. Tetienne, T. Hingant, J. V. Kim, L. H. Diez, J. P. Adam, K. Garcia, J. F. Roch, S. Rohart, A. Thiaville, D. Ravelosona, and V. Jacques, Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope, Science 344(6190), 1366 (2014)

    Article  ADS  Google Scholar 

  15. C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and D. Rugar, Nanoscale magnetic resonance imaging, Proc. Natl. Acad. Sci. USA 106(5), 1313 (2009)

    Article  ADS  Google Scholar 

  16. C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89(3), 035002 (2017) (rMP.)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham, and R. L. Walsworth, Sensitivity optimization for NV-diamond magnetometry, Rev. Mod. Phys. 92(1), 015004 (2020)

    Article  ADS  Google Scholar 

  18. J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, Optical magnetic detection of single-neuron action potentials using quantum defects in diamond, Proc. Natl. Acad. Sci. USA 113(49), 14133 (2016)

    Article  ADS  Google Scholar 

  19. H. C. Davis, P. Ramesh, A. Bhatnagar, A. Lee-Gosselin, J. F. Barry, D. R. Glenn, R. L. Walsworth, and M. G. Shapiro, Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry, Nat. Commun. 9(1), 131 (2018)

    Article  ADS  Google Scholar 

  20. D. A. Hopper, R. R. Grote, A. L. Exarhos, and L. C. Bassett, Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond, Phys. Rev. B 94(24), 241201 (2016) (pRB.)

    Article  ADS  Google Scholar 

  21. P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer, J. Wrachtrup, and F. Jelezko, Single-shot readout of a single nuclear spin, Science 329(5991), 542 (2010)

    Article  ADS  Google Scholar 

  22. P. Qian, X. Lin, F. Zhou, R. Ye, Y. Ji, B. Chen, G. Xie, and N. Xu, Machine-learning-assisted electron-spin readout of nitrogen-vacancy center in diamond, Appl. Phys. Lett. 118(8), 084001 (2021)

    Article  ADS  Google Scholar 

  23. Y. Song, Y. Tian, Z. Hu, F. Zhou, T. Xing, D. Lu, B. Chen, Y. Wang, N. Xu, and J. Du, Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond, Photon. Res. 8(8), 1289 (2020)

    Article  Google Scholar 

  24. T. Liu, J. Zhang, H. Yuan, L. Xu, G. Bian, P. Fan, M. Li, Y. Liu, S. Xia, C. Xu, and X. Xiao, A pulsed time-varying method for improving the spin readout efficiency of nitrogen vacancy centers, J. Phys. D 54(39), 395002 (2021)

    Article  Google Scholar 

  25. N. Oshnik, P. Rembold, T. Calarco, S. Montangero, E. Neu, and M. M. Müller, Robust magnetometry with single nitrogen-vacancy centers via two-step optimization, Phys. Rev. A 106(1), 013107 (2022)

    Article  ADS  Google Scholar 

  26. B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings, and M. Troyer, Hybrid quantum-classical approach to correlated materials, Phys. Rev. X 6(3), 031045 (2016)

    Google Scholar 

  27. S. Bravyi, G. Smith, and J. A. Smolin, Trading classical and quantum computational resources, Phys. Rev. X 6(2), 021043 (2016)

    Google Scholar 

  28. J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18(2), 023023 (2016)

    Article  ADS  MATH  Google Scholar 

  29. D. Suter and F. Jelezko, Single-spin magnetic resonance in the nitrogen-vacancy center of diamond, Prog. Nucl. Magn. Reson. Spectrosc. 98–99, 50 (2017)

    Article  Google Scholar 

  30. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, The nitrogen-vacancy colour centre in diamond, Phys. Rep. 528(1), 1 (2013)

    Article  ADS  Google Scholar 

  31. M. W. Doherty, N. B. Manson, P. Delaney, and L. C. L. Hollenberg, The negatively charged nitrogen-vacancy centre in diamond: The electronic solution, New J. Phys. 13(2), 025019 (2011)

    Article  ADS  Google Scholar 

  32. B. Chen, X. Hou, F. Zhou, P. Qian, H. Shen, and N. Xu, Detecting the out-of-time-order correlations of dynamical quantum phase transitions in a solid-state quantum simulator, Appl. Phys. Lett. 116(19), 194002 (2020)

    Article  ADS  Google Scholar 

  33. G. D. Fuchs, V. V. Dobrovitski, D. M. Toyli, F. J. Heremans, C. D. Weis, T. Schenkel, and D. D. Awschalom, Excited-state spin coherence of a single nitrogen-vacancy centre in diamond, Nat. Phys. 6(9), 668 (2010)

    Article  Google Scholar 

  34. M. L. Goldman, A. Sipahigil, M. W. Doherty, N. Y. Yao, S. D. Bennett, M. Markham, D. J. Twitchen, N. B. Manson, A. Kubanek, and M. D. Lukin, Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers, Phys. Rev. Lett. 114(14), 145502 (2015)

    Article  ADS  Google Scholar 

  35. N. B. Manson, J. P. Harrison, and M. J. Sellars, Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics, Phys. Rev. B 74(10), 104303 (2006)

    Article  ADS  Google Scholar 

  36. M. Steiner, P. Neumann, J. Beck, F. Jelezko, and J. Wrachtrup, Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond, Phys. Rev. B 81(3), 035205 (2010)

    Article  ADS  Google Scholar 

  37. S. A. Wolf, I. Rosenberg, R. Rapaport, and N. Bar-Gill, Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond, Phys. Rev. B 92(23), 235410 (2015)

    Article  ADS  Google Scholar 

  38. J. G. Skellam, The frequency distribution of the difference between two poisson variates belonging to different populations, J. R. Stat. Soc. 109(3), 296 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  39. X. Yang, X. Chen, J. Li, X. Peng, and R. Laamme, Hybrid quantum-classical approach to enhanced quantum metrology, Sci. Rep. 11, 672 (2021)

    Article  Google Scholar 

  40. J. Li, X. Yang, X. Peng, and C. P. Sun, Hybrid quantum-classical approach to quantum optimal control, Phys. Rev. Lett. 118(15), 150503 (2017)

    Article  ADS  Google Scholar 

  41. D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch, J. Baugh, B. Zeng, and R. Laamme, Enhancing quantum control by bootstrapping a quantum processor of 12 qubits, npj Quantum Inform. 3, 45 (2017)

    Article  ADS  Google Scholar 

  42. T. Xin, X. Nie, X. Kong, J. Wen, D. Lu, and J. Li, Quantum pure state tomography via variational hybrid quantum-classical method, Phys. Rev. Appl. 13(2), 024013 (2020)

    Article  ADS  Google Scholar 

  43. G. Bhole and J. A. Jones, Practical pulse engineering: Gradient ascent without matrix exponentiation, Front. Phys. 13(3), 130312 (2018)

    Article  Google Scholar 

  44. Y. Ouyang, C. Yu, G. Yan, and J. Chen, Machine learning approach for the prediction and optimization of thermal transport properties, Front. Phys. 16(4), 43200 (2021)

    Article  ADS  Google Scholar 

  45. X. Li, W. Yu, X. Fan, and G. J. Babu, Some optimizations on detecting gravitational wave using convolutional neural network, Front. Phys. 15(5), 54501 (2020)

    Article  ADS  Google Scholar 

  46. R. M. Lewis, V. Torczon, and M. W. Trosset, Direct search methods: Then and now, J. Comput. Appl. Math. 124(1–2), 191 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. E. Eiben and J. Smith, From evolutionary computation to the evolution of things, Nature 521(7553), 476 (2015)

    Article  ADS  Google Scholar 

  48. R. Hooke and T. A. Jeeves, “Direct search” solution of numerical and statistical problems, J. Assoc. Comput. Mach. 8(2), 212 (1961)

    Article  MATH  Google Scholar 

  49. D. A. Golter and H. Wang, Optically driven rabi oscillations and adiabatic passage of single electron spins in diamond, Phys. Rev. Lett. 112(11), 116403 (2014)

    Article  ADS  Google Scholar 

  50. L. Robledo, H. Bernien, I. van Weperen, and R. Hanson, Control and coherence of the optical transition of single nitrogen vacancy centers in diamond, Phys. Rev. Lett. 105(17), 177403 (2010)

    Article  ADS  Google Scholar 

  51. D. A. Hopper, H. J. Shulevitz, and L. C. Bassett, Spin readout techniques of the nitrogen-vacancy center in diamond, Micromachines (Basel) 9(9), 437 (2018)

    Article  Google Scholar 

  52. L. M. Pham, N. Bar-Gill, C. Belthangady, D. Le Sage, P. Cappellaro, M. D. Lukin, A. Yacoby, and R. L. Walsworth, Enhanced solid-state multispin metrology using dynamical decoupling, Phys. Rev. B 86(4), 045214 (2012)

    Article  ADS  Google Scholar 

  53. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, Quantum register based on individual electronic and nuclear spin qubits in diamond, Science 316(5829), 1312 (2007)

    Article  Google Scholar 

  54. L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, Magnetic field imaging with nitrogen-vacancy ensembles, New J. Phys. 13(4), 045021 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306600 and 2019YFA0308100), the National Natural Science Foundation of China (Grant Nos. 92265114, 92265204, and 11875159), and the Research Initiation Project (No. K2022MB0PI02) of Zhejiang Lab.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Lu or Nanyang Xu.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Fan, J., Ye, R. et al. Online optimization for optical readout of a single electron spin in diamond. Front. Phys. 18, 21301 (2023). https://doi.org/10.1007/s11467-022-1235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1235-5

Keywords

Navigation