Skip to main content
Log in

Deterministic and replaceable transfer of silver flakes for microcavities

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

How to fabricate high-quality microcavities simply and at low cost without causing damage to environmentally sensitive active layers such as perovskites are crucial for the studies of exciton-polaritons, however, it remains challenging in the field of microcavity fabrication. Usually, once the top mirror is deposited, the detuning of the microcavity is fixed and there is no easy way to tune it. Here, we have developed a method for deterministically transferring silver mirrors, which is relatively simple and guarantees the active layer from damaging of high temperature, particle bombardment, etc., during the deposition of the top mirror. Furthermore, with the help of a glass probe, we demonstrate a replaceable silver transfer method to tune the detuning of the microcavity, thereby changing the coupling of photons and excitons therein. The developed deterministic and replaceable silver mirror transfer methods will provide the capability to fabricate high-quality and tunable microcavities and play an active role in the development of the exciton-polariton field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69(23), 3314 (1992)

    Article  ADS  Google Scholar 

  2. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Bose-Einstein condensation of exciton polaritons, Nature 443(7110), 409 (2006)

    Article  ADS  Google Scholar 

  3. S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J. F. Carlin, and N. Grandjean, Roomtemperature polariton lasing in semiconductor microcavities, Phys. Rev. Lett. 98(12), 126405 (2007)

    Article  ADS  Google Scholar 

  4. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, From excitonic to photonic polariton condensate in a ZnO-based microcavity, Phys. Rev. Lett. 110(19), 196406 (2013)

    Article  ADS  Google Scholar 

  5. C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G. Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech, V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A. Forchel, Y. Yamamoto, and S. Höfling, An electrically pumped polariton laser, Nature 497(7449), 348 (2013)

    Article  ADS  Google Scholar 

  6. L. Zhang, F. Wu, S. Hou, Z. Zhang, Y.-H. Chou, K. Watanabe, T. Taniguchi, S. R. Forrest, and H. Deng, Van der Waals heterostructure polaritons with moiré-induced nonlinearity, Nature 591(7848), 61 (2021)

    Article  ADS  Google Scholar 

  7. N. Lundt, Ł. Dusanowski, E. Sedov, P. Stepanov, M. M. Glazov, S. Klembt, M. Klaas, J. Beierlein, Y. Qin, S. Tongay, M. Richard, A. V. Kavokin, S. Höfling, and C. Schneider, Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor, Nat. Nanotechnol. 14(8), 770 (2019)

    Article  ADS  Google Scholar 

  8. J. Gu, B. Chakraborty, M. Khatoniar, and V. M. Menon, A room-temperature polariton light-emitting diode based on monolayer WS2, Nat. Nanotechnol. 14(11), 1024 (2019)

    Article  ADS  Google Scholar 

  9. R. Su, A. Fieramosca, Q. Zhang, H. S. Nguyen, E. Deleporte, Z. Chen, D. Sanvitto, T. C. Liew, and Q. Xiong, Perovskite semiconductors for room-temperature exciton-polaritonics, Nat. Mater. 20(10), 1315 (2021)

    Article  ADS  Google Scholar 

  10. T. J. S. Evans, A. Schlaus, Y. Fu, X. Zhong, T. L. Atallah, M. S. Spencer, L. E. Brus, S. Jin, and X. Y. Zhu, Continuous-wave lasing in cesium lead bromide perovskite nanowires, Adv. Opt. Mater. 6(2), 1700982 (2018)

    Article  Google Scholar 

  11. S. Zhang, Q. Shang, W. Du, J. Shi, Z. Wu, Y. Mi, J. Chen, F. Liu, Y. Li, M. Liu, Q. Zhang, and X. Liu, Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires, Adv. Opt. Mater. 6(2), 1701032 (2018)

    Article  Google Scholar 

  12. Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, High-quality whisperinggallery-mode lasing from cesium lead halide perovskite nanoplatelets, Adv. Funct. Mater. 26(34), 6238 (2016)

    Article  Google Scholar 

  13. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut, Nano Lett. 15(6), 3692 (2015)

    Article  ADS  Google Scholar 

  14. J. C. Blancon, H. Tsai, W. Nie, C. C. Stoumpos, L. Pedesseau, C. Katan, M. Kepenekian, C. M. M. Soe, K. Appavoo, M. Y. Sfeir, S. Tretiak, P. M. Ajayan, M. G. Kanatzidis, J. Even, J. J. Crochet, and A. D. Mohite, Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites, Science 355(6331), 1288 (2017)

    Article  ADS  Google Scholar 

  15. A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco, M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici, G. Gigli, D. Gerace, D. Ballarini, and D. Sanvitto, Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature, Sci. Adv. 5(5), eaav9967 (2019)

    Article  ADS  Google Scholar 

  16. M. A. Green, A. Ho-Baillie, and H. J. Snaith, The emergence of perovskite solar cells, Nat. Photonics 8(7), 506 (2014)

    Article  ADS  Google Scholar 

  17. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nat. Commun. 6, 8056 (2015)

    Article  ADS  Google Scholar 

  18. Y. Gao, L. Zhao, Q. Shang, Y. Zhong, Z. Liu, J. Chen, Z. Zhang, J. Shi, W. Du, Y. Zhang, S. Chen, P. Gao, X. Liu, X. Wang, and Q. Zhang, Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy, Adv. Mater. 30(31), 1801805 (2018)

    Article  Google Scholar 

  19. L. Polimeno, G. Lerario, M. De Giorgi, L. De Marco, L. Dominici, F. Todisco, A. Coriolano, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, A. Moliterni, C. Giannini, V. Olieric, G. Gigli, D. Ballarini, Q. Xiong, A. Fieramosca, D. D. Solnyshkov, G. Malpuech, and D. Sanvitto, Tuning of the Berry curvature in 2D perovskite polaritons, Nat. Nanotechnol. 16(12), 1349 (2021)

    Article  ADS  Google Scholar 

  20. R. Su, S. Ghosh, J. Wang, S. Liu, C. Diederichs, T. C. Liew, and Q. Xiong, Observation of exciton polariton condensation in a perovskite lattice at room temperature, Nat. Phys. 16(3), 301 (2020)

    Article  Google Scholar 

  21. R. Su, S. Ghosh, T. C. Liew, and Q. Xiong, Optical switching of topological phase in a perovskite polariton lattice, Sci. Adv. 7(21), eabf8049 (2021)

    Article  ADS  Google Scholar 

  22. R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. Liew, and Q. Xiong, Room temperature long-range coherent exciton-polariton condensate flow in lead halide perovskites, Sci. Adv. 4(10), eaau0244 (2018)

    Article  ADS  Google Scholar 

  23. R. J. Tao, K. Peng, L. Haeberlé, Q. W. Li, D. F. Jin, G. R. Fleming, S. Kéna-Cohen, X. Zhang, and W. Bao, Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature, Nat. Mater. 21, 761 (2022)

    Article  ADS  Google Scholar 

  24. T. Wang, Z. Zang, Y. Gao, C. Lyu, P. Gu, Y. Yao, K. Peng, K. Watanabe, T. Taniguchi, X. Liu, Y. Gao, W. Bao, and Y. Ye, Electrically pumped polarized exciton-polaritons in a halide perovskite microcavity, Nano Lett. 22(13), 5175 (2022)

    Article  ADS  Google Scholar 

  25. M. S. Spencer, Y. Fu, A. P. Schlaus, D. Hwang, Y. Dai, M. D. Smith, D. R. Gamelin, and X. Y. Zhu, Spin-orbit-coupled exciton-polariton condensates in lead halide perovskites, Sci. Adv. 7(49), eabj7667 (2021)

    Article  ADS  Google Scholar 

  26. Y. Li, X. Ma, X. Zhai, M. Gao, H. Dai, S. Schumacher, and T. Gao, Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature, Nat. Commun. 13, 1 (2022)

    Google Scholar 

  27. R. Su, C. Diederichs, J. Wang, T. C. H. Liew, J. Zhao, S. Liu, W. Xu, Z. Chen, and Q. Xiong, Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets, Nano Lett. 17(6), 3982 (2017)

    Article  ADS  Google Scholar 

  28. W. Bao, X. Liu, F. Xue, F. Zheng, R. Tao, S. Wang, Y. Xia, M. Zhao, J. Kim, S. Yang, Q. Li, Y. Wang, Y. Wang, L. W. Wang, A. H. MacDonald, and X. Zhang, Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity, Proc. Natl. Acad. Sci. USA 116(41), 20274 (2019)

    Article  ADS  Google Scholar 

  29. L. Polimeno, A. Fieramosca, G. Lerario, M. Cinquino, M. De Giorgi, D. Ballarini, F. Todisco, L. Dominici, V. Ardizzone, M. Pugliese, C. T. Prontera, V. Maiorano, G. Gigli, L. De Marco, and D. Sanvitto, Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites, Adv. Opt. Mater. 8(16), 2000176 (2020)

    Article  Google Scholar 

  30. A. Brehier, R. Parashkov, J. S. Lauret, and E. Deleporte, Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors, Appl. Phys. Lett. 89(17), 171110 (2006)

    Article  ADS  Google Scholar 

  31. C. Rupprecht, N. Lundt, M. Wurdack, P. Stepanov, E. Estrecho, M. Richard, E. A. Ostrovskaya, S. Höfling, and C. Schneider, Micro-mechanical assembly and characterization of high-quality Fabry-Pérot microcavities for the integration of two-dimensional materials, Appl. Phys. Lett. 118(10), 103103 (2021)

    Article  ADS  Google Scholar 

  32. C. Rupprecht, M. Klaas, H. Knopf, T. Taniguchi, K. Watanabe, Y. Qin, S. Tongay, S. Schröder, F. Eilenberger, S. Höfling, and C. Schneider, Demonstration of a polariton step potential by local variation of light-matter coupling in a van-der-Waals heterostructure, Opt. Express 28(13), 18649 (2020)

    Article  ADS  Google Scholar 

  33. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nat. Mater. 5(1), 33 (2006)

    Article  ADS  Google Scholar 

  34. M. Yi and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3(22), 11700 (2015)

    Article  Google Scholar 

  35. F. Liu, Mechanical exfoliation of large area 2D materials from vdW crystals, Prog. Surf. Sci. 96(2), 100626 (2021)

    Article  Google Scholar 

  36. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. Van Der Zant, and G. A. Steele, Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping, 2D Mater. 1, 011002 (2014)

    Article  Google Scholar 

  37. M. Rodová, J. Brožek, K. Knížek, and K. Nitsch, Phase transitions in ternary caesium lead bromide, J. Therm. Anal. Calorim. 71(2), 667 (2003)

    Article  Google Scholar 

  38. R. Jayaprakash, F. G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap, Sci. Rep. 7, 5542 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61875001) and the Beijing Natural Science Foundation (No. JQ21018). W. B. acknowledge support from National Science Foundation (Award No. DMR-2143041). T. T. acknowledges support from the JSPS KAKENHI (Grant Nos. 19H05790 and 20H00354) and A3 Foresight by JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ye.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zang, Z., Gao, Y. et al. Deterministic and replaceable transfer of silver flakes for microcavities. Front. Phys. 18, 33302 (2023). https://doi.org/10.1007/s11467-022-1229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1229-3

Keywords

Navigation