Skip to main content
Log in

Single-photon-level light storage with distributed Rydberg excitations in cold atoms

  • Research Article
  • Published:
Frontiers of Physics

Abstract

We present an improved version of the superatom (SA) model to examine the slow-light dynamics of a few-photons signal field in cold Rydberg atoms with van der Waals (vdW) interactions. A main feature of this version is that it promises consistent estimations on total Rydberg excitations based on dynamic equations of SAs or atoms. We consider two specific cases in which the incident signal field contains more photons with a smaller detuning or less photons with a larger detuning so as to realize the single-photon-level light storage. It is found that vdW interactions play a significant role even for the slow-light dynamics of a single-photon signal field as distributed Rydberg excitations are inevitable in the picture of dark-state polariton. Moreover, the stored (retrieved) signal field exhibits a clearly asymmetric (more symmetric) profile because its leading and trailing edges undergo different (identical) traveling journeys, and higher storage/retrieval efficiencies with well preserved profiles apply only to weaker and well detuned signal fields. These findings are crucial to understand the nontrivial interplay of single-photon-level light storage and distributed Rydberg excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References and notes

  1. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  2. H. P. Zeng, G. Wu, E. Wu, H. F. Pan, C. Y. Zhou, F. Treussart, and J. F. Roch, Generation and detection of infrared single photons and their applications, Front. Phys. China 1(1), 1 (2006)

    ADS  Google Scholar 

  3. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long distance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)

    ADS  Google Scholar 

  4. E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)

    ADS  Google Scholar 

  5. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Photon blockade in an optical cavity with one trapped atom, Nature 436(7047), 87 (2005)

    ADS  Google Scholar 

  6. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip, Nature 450(7167), 272 (2007)

    ADS  Google Scholar 

  7. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, Two-photon gateway in one-atom cavity quantum electrodynamics, Phys. Rev. Lett. 101(20), 203602 (2008)

    ADS  Google Scholar 

  8. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)

    ADS  Google Scholar 

  9. C. Möhl, N. L. R. Spong, Y. C. Jiao, C. So, T. Ilieva, M. Weidemüller, and C. S. Adams, Photon correlation transients in a weakly blockaded Rydberg ensemble, J. Phys. At. Mol. Opt. Phys. 53(8), 084005 (2020)

    ADS  Google Scholar 

  10. Z. Y. Shen, H. L. Yang, X. Liu, X. J. Huang, T. Y. Xiang, J. Wu, and W. Chen, Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response, Front. Phys. 15(1), 12601 (2020)

    ADS  Google Scholar 

  11. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, Polarization qubit phase gate in driven atomic media, Phys. Rev. Lett. 90(19), 197902 (2003)

    ADS  Google Scholar 

  12. Z. B. Wang, K. P. Marzlin, and B. C. Sanders, Large cross-phase modulation between slow copropagating weak pulses in 87Rb, Phys. Rev. Lett. 97(6), 063901 (2006)

    ADS  Google Scholar 

  13. B. W. Shiau, M. C. Wu, C. C. Lin, and Y. C. Chen, Lowlight-level cross-phase modulation with double slow light pulses, Phys. Rev. Lett. 106(19), 193006 (2011)

    ADS  Google Scholar 

  14. M. Saffman, T. G. Walker, and K. Molmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)

    ADS  Google Scholar 

  15. J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, A single-molecule optical transistor, Nature 460(7251), 76 (2009)

    ADS  Google Scholar 

  16. J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using cold Rydberg atoms, Annu. Rev. Cold At. Mol. 1, 301 (2013)

    Google Scholar 

  17. O. Firstenberg, C. S. Adams, and S. Hofferberth, Nonlinear quantum optics mediated by Rydberg interactions, J. Phys. At. Mol. Opt. Phys. 49(15), 152003 (2016)

    ADS  Google Scholar 

  18. Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science 336(6083), 887 (2012)

    ADS  Google Scholar 

  19. H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions, Phys. Rev. Lett. 113(5), 053601 (2014)

    ADS  Google Scholar 

  20. D. Tiarks, S. Schmidt, G. Rempe, and S. Durr, Optical π phase shift created with a single-photon pulse, Sci. Adv. 2(4), e1600036 (2016)

    ADS  Google Scholar 

  21. A. Padrón-Brito, R. Tricarico, P. Farrera, E. Distante, K. Theophilo, D. Chang, and H. de Riedmatten, Transient dynamics of the quantum light retrieved from Rydberg polaritons, New J. Phys. 23(6), 063009 (2021)

    ADS  Google Scholar 

  22. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom-light interaction in a blockade Rydberg ensemble, Phys. Rev. Lett. 105(19), 193603 (2010)

    ADS  Google Scholar 

  23. P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans, M. D. Lukin, A. V. Gorshkov, and H. P. Buchler, Scattering resonances and bound states for strongly interacting Rydberg polaritons, Phys. Rev. A 90(5), 053804 (2014)

    ADS  Google Scholar 

  24. M. F. Maghrebi, M. J. Gullans, P. Bienias, S. Choi, I. Martin, O. Firstenberg, M. D. Lukin, H. P. Buchler, and A. V. Gorshkov, Coulomb bound states of strongly interacing photons, Phys. Rev. Lett. 115(12), 123601 (2015)

    ADS  Google Scholar 

  25. M. Moos, R. Unanyan, and M. Fleischhauer, Creation and detection of photonic molecules in Rydberg gases, Phys. Rev. A 96(2), 023853 (2017)

    ADS  Google Scholar 

  26. M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)

    ADS  Google Scholar 

  27. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett. 93(6), 063001 (2004)

    ADS  Google Scholar 

  28. K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemuller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett. 93(16), 163001 (2004)

    ADS  Google Scholar 

  29. X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)

    ADS  Google Scholar 

  30. D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett. 107(21), 213601 (2011)

    ADS  Google Scholar 

  31. Y. M. Liu, D. Yan, X. D. Tian, C. L. Cui, and J. H. Wu, Electromagnetically induced transparency with cold Rydberg atoms: Superatom model beyond the weak-probe approximation, Phys. Rev. A 89(3), 033839 (2014)

    ADS  Google Scholar 

  32. X. D. Tian, Y. M. Liu, Q. Q. Bao, J. H. Wu, M. Artoni, and G. C. La Rocca, Nonclassical storage and retrieval of a multi-photon pulse in cold Rydberg atoms, Phys. Rev. A 97(4), 043811 (2018)

    ADS  Google Scholar 

  33. D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett. 110(10), 103001 (2013)

    ADS  Google Scholar 

  34. C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-Poissonian statistics of Rydberg interacting dark-state polaritons, Phys. Rev. Lett. 110(20), 203601 (2013)

    ADS  Google Scholar 

  35. E. Distante, A. Padron-Brito, M. Cristiani, D. Paredes-Barato, and H. de Riedmatten, Storage enhanced nonlinearities in a cold atomic Rydberg ensemble, Phys. Rev. Lett. 117(11), 113001 (2016)

    ADS  Google Scholar 

  36. F. Ripka, Y. H. Chen, R. Low, and T. Pfau, Rydberg polaritons in a thermal vapor, Phys. Rev. A 93(5), 053429 (2016)

    ADS  Google Scholar 

  37. L. Li and A. Kuzmich, Quantum memory with strong and contollable Rydberg-level interactions, Nat. Commun. 7(1), 13618 (2016)

    ADS  Google Scholar 

  38. E. Distante, P. Farrera, A. Padron-Brito, D. Paredes-Barato, G. Heinze, and H. de Riedmatten, Storing single photons emitted by a quantum memory on a highly excited Rydberg state, Nat. Commun. 8(1), 14072 (2017)

    ADS  Google Scholar 

  39. C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, and M. Weidemüller, An experimental approach for investigating many-body phenomena in Rydberg interacting quantum systems, Front. Phys. 9(5), 571 (2014)

    ADS  Google Scholar 

  40. A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon-photon interactions via Rydberg blockade, Phys. Rev. Lett. 107(13), 133602 (2011)

    ADS  Google Scholar 

  41. B. He, A. V. Sharypov, J. T. Sheng, C. Simon, and M. Xiao, Two-photon dynamics in coherent Rydberg atomic ensemble, Phys. Rev. Lett. 112(13), 133606 (2014)

    ADS  Google Scholar 

  42. T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and D. E. Chang, Quantum dynamics of propagating photons with strong interactions: A generalized input-output formalism, New J. Phys. 17(11), 113001 (2015)

    ADS  Google Scholar 

  43. M. J. Gullans, J. D. Thompson, Y. Wang, Q. Y. Liang, V. Vuletic, M. D. Lukin, and A. V. Gorshkov, Effective field theory for Rydberg polaritons, Phys. Rev. Lett. 117(11), 113601 (2016)

    ADS  Google Scholar 

  44. W. B. Li, D. Viscor, S. Hofferberth, and I. Lesanovsky, Electromagnetically induced transparency in an entangled medium, Phys. Rev. Lett. 112(24), 243601 (2014)

    ADS  Google Scholar 

  45. R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Science Publications, 2000

  46. Here and in what follows we choose O as the expectation value of operator Ô by removing its hat.

  47. L. Yang, B. He, J. H. Wu, Z. Y. Zhang, and M. Xiao, Interacting photon pulses in a Rydberg medium, Optica 3(10), 1095 (2016)

    ADS  Google Scholar 

  48. This quantity is usually called blockade radius and will reduce to Rb = (C6γe/∣Ωc2)1/6 in the case of δ = 0 while to Rb = (C6δ/∣Ωc2)1/6 in the case of δδe.

  49. This conclusion holds also for the attractive vdW interactions denoted by a negative C6 and thus \(\bar \Delta \to - \infty \) (instead of \(\bar \Delta \to \infty \)) for the ΣRR fraction of SAs.

  50. In fact, we can make nb sufficiently large to yield a remarkably enhanced collective coupling (\(\sqrt {{n_b}} {\Omega _s}\)).

  51. O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, Attractive photons in a quantum nonlinear medium, Nature 502(7469), 71 (2013)

    ADS  Google Scholar 

  52. This equality is equivalent after proper arrangement to Eq. (10) in [M. Garttner, S. Whitlock, D. W. Schonleber, and J. Evers, Phys. Rev. A 89(06), 063407 (2014)].

    ADS  Google Scholar 

  53. C. Shou and G. X. Huang, Slow-light soliton beam splitters, Phys. Rev. A 99(4), 043821 (2019)

    ADS  Google Scholar 

  54. J. Gea-Banacloche and N. Nemet, Conditional phase gate using an optomechanical resonator, Phys. Rev. A 89(5), 052327 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 11534002 and 12074061), and the Cooperative Program by the Italian Ministry of Foreign Affairs and International Cooperation (No. PGR00960), and the National Natural Science Foundation of China (No. 11861131001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Wu.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1105-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wu, J., Artoni, M. et al. Single-photon-level light storage with distributed Rydberg excitations in cold atoms. Front. Phys. 17, 22502 (2022). https://doi.org/10.1007/s11467-021-1105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1105-6

Keywords