Abstract
We present an improved version of the superatom (SA) model to examine the slow-light dynamics of a few-photons signal field in cold Rydberg atoms with van der Waals (vdW) interactions. A main feature of this version is that it promises consistent estimations on total Rydberg excitations based on dynamic equations of SAs or atoms. We consider two specific cases in which the incident signal field contains more photons with a smaller detuning or less photons with a larger detuning so as to realize the single-photon-level light storage. It is found that vdW interactions play a significant role even for the slow-light dynamics of a single-photon signal field as distributed Rydberg excitations are inevitable in the picture of dark-state polariton. Moreover, the stored (retrieved) signal field exhibits a clearly asymmetric (more symmetric) profile because its leading and trailing edges undergo different (identical) traveling journeys, and higher storage/retrieval efficiencies with well preserved profiles apply only to weaker and well detuned signal fields. These findings are crucial to understand the nontrivial interplay of single-photon-level light storage and distributed Rydberg excitations.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References and notes
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
H. P. Zeng, G. Wu, E. Wu, H. F. Pan, C. Y. Zhou, F. Treussart, and J. F. Roch, Generation and detection of infrared single photons and their applications, Front. Phys. China 1(1), 1 (2006)
L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long distance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Photon blockade in an optical cavity with one trapped atom, Nature 436(7047), 87 (2005)
Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip, Nature 450(7167), 272 (2007)
A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, Two-photon gateway in one-atom cavity quantum electrodynamics, Phys. Rev. Lett. 101(20), 203602 (2008)
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
C. Möhl, N. L. R. Spong, Y. C. Jiao, C. So, T. Ilieva, M. Weidemüller, and C. S. Adams, Photon correlation transients in a weakly blockaded Rydberg ensemble, J. Phys. At. Mol. Opt. Phys. 53(8), 084005 (2020)
Z. Y. Shen, H. L. Yang, X. Liu, X. J. Huang, T. Y. Xiang, J. Wu, and W. Chen, Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response, Front. Phys. 15(1), 12601 (2020)
C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, Polarization qubit phase gate in driven atomic media, Phys. Rev. Lett. 90(19), 197902 (2003)
Z. B. Wang, K. P. Marzlin, and B. C. Sanders, Large cross-phase modulation between slow copropagating weak pulses in 87Rb, Phys. Rev. Lett. 97(6), 063901 (2006)
B. W. Shiau, M. C. Wu, C. C. Lin, and Y. C. Chen, Lowlight-level cross-phase modulation with double slow light pulses, Phys. Rev. Lett. 106(19), 193006 (2011)
M. Saffman, T. G. Walker, and K. Molmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)
J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V. Sandoghdar, A single-molecule optical transistor, Nature 460(7251), 76 (2009)
J. D. Pritchard, K. J. Weatherill, and C. S. Adams, Nonlinear optics using cold Rydberg atoms, Annu. Rev. Cold At. Mol. 1, 301 (2013)
O. Firstenberg, C. S. Adams, and S. Hofferberth, Nonlinear quantum optics mediated by Rydberg interactions, J. Phys. At. Mol. Opt. Phys. 49(15), 152003 (2016)
Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science 336(6083), 887 (2012)
H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions, Phys. Rev. Lett. 113(5), 053601 (2014)
D. Tiarks, S. Schmidt, G. Rempe, and S. Durr, Optical π phase shift created with a single-photon pulse, Sci. Adv. 2(4), e1600036 (2016)
A. Padrón-Brito, R. Tricarico, P. Farrera, E. Distante, K. Theophilo, D. Chang, and H. de Riedmatten, Transient dynamics of the quantum light retrieved from Rydberg polaritons, New J. Phys. 23(6), 063009 (2021)
J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom-light interaction in a blockade Rydberg ensemble, Phys. Rev. Lett. 105(19), 193603 (2010)
P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans, M. D. Lukin, A. V. Gorshkov, and H. P. Buchler, Scattering resonances and bound states for strongly interacting Rydberg polaritons, Phys. Rev. A 90(5), 053804 (2014)
M. F. Maghrebi, M. J. Gullans, P. Bienias, S. Choi, I. Martin, O. Firstenberg, M. D. Lukin, H. P. Buchler, and A. V. Gorshkov, Coulomb bound states of strongly interacing photons, Phys. Rev. Lett. 115(12), 123601 (2015)
M. Moos, R. Unanyan, and M. Fleischhauer, Creation and detection of photonic molecules in Rydberg gases, Phys. Rev. A 96(2), 023853 (2017)
M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett. 93(6), 063001 (2004)
K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemuller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett. 93(16), 163001 (2004)
X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett. 107(21), 213601 (2011)
Y. M. Liu, D. Yan, X. D. Tian, C. L. Cui, and J. H. Wu, Electromagnetically induced transparency with cold Rydberg atoms: Superatom model beyond the weak-probe approximation, Phys. Rev. A 89(3), 033839 (2014)
X. D. Tian, Y. M. Liu, Q. Q. Bao, J. H. Wu, M. Artoni, and G. C. La Rocca, Nonclassical storage and retrieval of a multi-photon pulse in cold Rydberg atoms, Phys. Rev. A 97(4), 043811 (2018)
D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett. 110(10), 103001 (2013)
C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-Poissonian statistics of Rydberg interacting dark-state polaritons, Phys. Rev. Lett. 110(20), 203601 (2013)
E. Distante, A. Padron-Brito, M. Cristiani, D. Paredes-Barato, and H. de Riedmatten, Storage enhanced nonlinearities in a cold atomic Rydberg ensemble, Phys. Rev. Lett. 117(11), 113001 (2016)
F. Ripka, Y. H. Chen, R. Low, and T. Pfau, Rydberg polaritons in a thermal vapor, Phys. Rev. A 93(5), 053429 (2016)
L. Li and A. Kuzmich, Quantum memory with strong and contollable Rydberg-level interactions, Nat. Commun. 7(1), 13618 (2016)
E. Distante, P. Farrera, A. Padron-Brito, D. Paredes-Barato, G. Heinze, and H. de Riedmatten, Storing single photons emitted by a quantum memory on a highly excited Rydberg state, Nat. Commun. 8(1), 14072 (2017)
C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, and M. Weidemüller, An experimental approach for investigating many-body phenomena in Rydberg interacting quantum systems, Front. Phys. 9(5), 571 (2014)
A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon-photon interactions via Rydberg blockade, Phys. Rev. Lett. 107(13), 133602 (2011)
B. He, A. V. Sharypov, J. T. Sheng, C. Simon, and M. Xiao, Two-photon dynamics in coherent Rydberg atomic ensemble, Phys. Rev. Lett. 112(13), 133606 (2014)
T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and D. E. Chang, Quantum dynamics of propagating photons with strong interactions: A generalized input-output formalism, New J. Phys. 17(11), 113001 (2015)
M. J. Gullans, J. D. Thompson, Y. Wang, Q. Y. Liang, V. Vuletic, M. D. Lukin, and A. V. Gorshkov, Effective field theory for Rydberg polaritons, Phys. Rev. Lett. 117(11), 113601 (2016)
W. B. Li, D. Viscor, S. Hofferberth, and I. Lesanovsky, Electromagnetically induced transparency in an entangled medium, Phys. Rev. Lett. 112(24), 243601 (2014)
R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Science Publications, 2000
Here and in what follows we choose O as the expectation value of operator Ô by removing its hat.
L. Yang, B. He, J. H. Wu, Z. Y. Zhang, and M. Xiao, Interacting photon pulses in a Rydberg medium, Optica 3(10), 1095 (2016)
This quantity is usually called blockade radius and will reduce to Rb = (C6γe/∣Ωc∣2)1/6 in the case of δ = 0 while to Rb = (C6δ/∣Ωc∣2)1/6 in the case of δ ≫ δe.
This conclusion holds also for the attractive vdW interactions denoted by a negative C6 and thus \(\bar \Delta \to - \infty \) (instead of \(\bar \Delta \to \infty \)) for the ΣRR fraction of SAs.
In fact, we can make nb sufficiently large to yield a remarkably enhanced collective coupling (\(\sqrt {{n_b}} {\Omega _s}\)).
O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, Attractive photons in a quantum nonlinear medium, Nature 502(7469), 71 (2013)
This equality is equivalent after proper arrangement to Eq. (10) in [M. Garttner, S. Whitlock, D. W. Schonleber, and J. Evers, Phys. Rev. A 89(06), 063407 (2014)].
C. Shou and G. X. Huang, Slow-light soliton beam splitters, Phys. Rev. A 99(4), 043821 (2019)
J. Gea-Banacloche and N. Nemet, Conditional phase gate using an optomechanical resonator, Phys. Rev. A 89(5), 052327 (2014)
Acknowledgements
The work was supported by the National Natural Science Foundation of China (Nos. 11534002 and 12074061), and the Cooperative Program by the Italian Ministry of Foreign Affairs and International Cooperation (No. PGR00960), and the National Natural Science Foundation of China (No. 11861131001).
Author information
Authors and Affiliations
Corresponding author
Additional information
This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1105-6.
Rights and permissions
About this article
Cite this article
Zhang, H., Wu, J., Artoni, M. et al. Single-photon-level light storage with distributed Rydberg excitations in cold atoms. Front. Phys. 17, 22502 (2022). https://doi.org/10.1007/s11467-021-1105-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11467-021-1105-6