Skip to main content
Log in

Nontrivial standing wave state in frequency-weighted Kuramoto model

  • Research article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Synchronization in a frequency-weighted Kuramoto model with a uniform frequency distribution is studied. We plot the bifurcation diagram and identify the asymptotic coherent states. Numerical simulations show that the system undergoes two first-order transitions in both the forward and backward directions. Apart from the trivial phase-locked state, a novel nonstationary coherent state, i.e., a nontrivial standing wave state is observed and characterized. In this state, oscillators inside the coherent clusters are not frequency-locked as they would be in the usual standing wave state. Instead, their average frequencies are locked to a constant. The critical coupling strength from the incoherent state to the nontrivial standing wave state can be obtained by performing linear stability analysis. The theoretical results are supported by the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2003

    MATH  Google Scholar 

  2. L. Huang, Y.-C. Lai, K. Park, X. G. Wang, C. H. Lai, and R. A. Gatenby, Synchronization in complex clustered networks, Front. Phys. China 2(4), 446 (2007)

    Article  ADS  Google Scholar 

  3. Y. Kuramoto, in: International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki, Lecture Notes in Physics Vol. 39, Berlin: Springer-Verlag, 1975

  4. S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D 143(1–4), 1 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. D. Crawford, Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys. 74(5–6), 1047 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scalefree networks, Phys. Rev. Lett. 106(12), 128701 (2011)

    Article  ADS  Google Scholar 

  7. Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)

    Article  ADS  Google Scholar 

  8. X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88(1), 010802(R) (2013)

    Article  ADS  Google Scholar 

  9. X. Hu, S. Boccaletti, W. Huang, X. Zhang, Z. Liu, S. Guan, and C.H. Lai, Exact solution for the first-order synchronization transition in a generalized Kuramoto model, Sci. Rep. 4, 7262 (2014)

    Article  ADS  Google Scholar 

  10. W. Zhou, L. Chen, H. Bi, X. Hu, Z. Liu, and S. Guan, Explosive synchronization with asymmetric frequency distribution, Phys. Rev. E 92(1), 012812 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)

    Article  ADS  Google Scholar 

  12. X. Huang, J. Gao, Y. T. Sun, Z. G. Zheng, and C. Xu, Effects of frustration on explosive synchronization, Front. Phys. 11(6), 110504 (2016)

    Article  Google Scholar 

  13. H. Hong and S. H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: An example of conformist and contrarian oscillators, Phys. Rev. Lett. 106(5), 054102 (2011)

    Article  ADS  Google Scholar 

  14. H. Bi, X. Hu, S. Boccaletti, X. Wang, Y. Zou, Z. Liu, and S. Guan, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett. 117(20), 204101 (2016)

    Article  ADS  Google Scholar 

  15. E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen, Exact results for the Kuramoto model with a bimodal frequency distribution, Phys. Rev. E 79(2), 026204 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos 18(3), 037113 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. T. Qiu, S. Boccaletti, I. Bonamassa, Y. Zou, J. Zhou, Z. Liu, and S. Guan, Synchronization and Bellerophon states in conformist and contrarian oscillators, Sci. Rep. 6, 36713 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11135001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhou or Shu-Guang Guan.

Additional information

These authors contributed equally to this work. arXiv: 1702.08629.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, HJ., Li, Y., Zhou, L. et al. Nontrivial standing wave state in frequency-weighted Kuramoto model. Front. Phys. 12, 126801 (2017). https://doi.org/10.1007/s11467-017-0672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-017-0672-z

Keywords

Navigation