Skip to main content
Log in

Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Au-core/Pt-shell nanorods (Au@Pt NRs) have been prepared by a Au nanorod-mediated growth method, and they exhibit high electromagnetic field enhancements under coupling conditions. Boosted by a long-range effect of the high electromagnetic field generated by the Au core, the electromagnetic field enhancement can be controlled by changing the morphology of the nanostructures. In this study, we report the results on the simulations of the electromagnetic field enhancement using a finite difference time domain (FDTD) method, taking the real shapes of the Au@Pt NRs into account. Due to the “hot spot” effect, the electromagnetic field can be localized between the Pt nanodots. The electromagnetic field enhancement is found to be rather independent of the Pt content, whereas the local roughness and small sharp features might significantly modify the near-field. As the electromagnetic field enhancement can be tuned by the distribution of Pt nanodots over the Au-core, Au@Pt NRs can find potential applications in related areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. H. Xia and Y. N. Xia, Gold nanocages as multifunctional materials for nanomedicine, Front. Phys. 9(3), 378 (2014)

    Article  Google Scholar 

  2. S. Linic, P. Christopher, H. Xin, and A. Marimuthu, Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties, Acc. Chem. Res. 46(8), 1890 (2013)

    Article  Google Scholar 

  3. R. Ghosh Chaudhuri, and S. Paria, Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112(4), 2373 (2012)

    Article  Google Scholar 

  4. O. Nicoletti, F. de La Pe˜na, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature 502(7469), 80 (2013)

    Article  ADS  Google Scholar 

  5. Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)

    Article  Google Scholar 

  6. Z. Y. Li, Nanophotonics in China: Overviews and highlights, Front. Phys. 7(6), 601 (2012)

    Article  Google Scholar 

  7. J. S. Miao, W. D. Hu, Y. L. Jing, W. J. Luo, L. Liao, A. L. Pan, S. W. Wu, J. X. Cheng, X. S. Chen, and W. Lu, Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays, Small 11(20), 2392 (2015)

    Article  Google Scholar 

  8. S. P. Zhang, H. Wei, K. Bao, U. Hakanson, N. J. Halas, P. Nordlander, and H. X. Xu, Chiral surface plasmon polari-tons on metallic nanowires, Phys. Rev. Lett. 107(9), 096801 (2011)

    Article  ADS  Google Scholar 

  9. S. J. Barrow, X. Wei, J. S. Baldauf, A. M. Funston, and P. Mulvaney, The surface plasmon modes of self-assembled gold nanocrystals, Nat. Commun. 3, 1275 (2012)

    Article  ADS  Google Scholar 

  10. L. M. Tong and H. X. Xu, Frontiers of plasmonics, Front. Phys. 9(1), 1 (2014)

    Article  ADS  Google Scholar 

  11. R. A. Alvarez-Puebla, A. Agarwal, P. Manna, B. P. Khanal, P. Aldeanueva-Potel, E. Carbó-Argibay, N. Pazos-Pérez, L. Vigderman, E. R. Zubarev, N. A. Kotov, and L. M. Liz-Marzan, Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions, Proc. Natl. Acad. Sci. USA 108(20), 8157 (2011)

    Article  Google Scholar 

  12. E. C. Le Ru and P. G. Etchegoin, Single-molecule surfaceenhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 63(1), 65 (2012)

    Article  ADS  Google Scholar 

  13. G. McNay, D. Eustace, W. E. Smith, K. Faulds, and D. Graham, Surface-enhanced raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): A review of applications, Appl. Spectrosc. 65(8), 825 (2011)

    Article  ADS  Google Scholar 

  14. Y. S. Yamamoto, M. Ishikawa, Y. Ozaki, and T. Itoh, Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing, Front. Phys. 9(1), 31 (2014)

    Article  Google Scholar 

  15. Z. Kim, Single-molecule surface-enhanced Raman scattering: Current status and future perspective, Front. Phys. 9(1), 25 (2014)

    Article  Google Scholar 

  16. Y. Zhang, J. Qian, D. Wang, Y. L. Wang, and S. L. He, Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy, Angew. Chem. Int. Ed. 52(4), 1148 (2013)

    Article  Google Scholar 

  17. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced raman spectroscopy, Nano Lett. 10(12), 4952 (2010)

    Article  ADS  Google Scholar 

  18. K. H. Su, S. Durant, J. M. Steele, Y. Xiong, C. Sun, and X. Zhang, Raman enhancement factor of a single tunable nanoplasmonic resonator, J. Phys. Chem. B 110(9), 3964 (2006)

    Article  Google Scholar 

  19. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms, Nano Lett. 6(9), 2060 (2006)

    Article  ADS  Google Scholar 

  20. S. Wang, D. F. Pile, C. Sun, and X. Zhang, Nanopin plasmonic resonator array and its optical properties, Nano Lett. 7(4), 1076 (2007)

    Article  ADS  Google Scholar 

  21. Y. Z. He, J. X. Fu, and Y. P. Zhao, Oblique angle deposition and its applications in plasmonics, Front. Phys. 9(1), 47 (2014)

    Article  Google Scholar 

  22. F. Z. Cong, H. Wei, X. R. Tian, and H. X. Xu, A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering, Front. Phys. 7(5), 521 (2012)

    Article  Google Scholar 

  23. W. Y. Rao, Q. Li, Y. Z. Wang, T. Li, and L. J. Wu, Comparison of photoluminescence quantum yield of single gold nanobipyramids and gold nanorods, ACS Nano 9(3), 2783 (2015)

    Article  Google Scholar 

  24. S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, Resonant plasmonic enhancement of singlemolecule fluorescence by individual gold nanorods, ACS Nano 8(5), 4440 (2014)

    Article  Google Scholar 

  25. Z. L. Zhang, L. Chen, S. X. Sheng, M. T. Sun, H. R. Zheng, K. Q. Chen, and H. X. Xu, High-vacuum tip enhanced Raman spectroscopy, Front. Phys. 9(1), 17 (2014)

    Article  Google Scholar 

  26. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, SERS: Materials, applications, and the future, Mater. Today 15(1–2), 16 (2012)

    Article  Google Scholar 

  27. K. Ikeda, J. Sato, N. Fujimoto, N. Hayazawa, S. Kawata, and K. Uosaki, Plasmonic enhancement of Raman scattering on non-SERS-active platinum substrates, J. Phys. Chem. C 113(27), 11816 (2009)

    Article  Google Scholar 

  28. J. F. Li, Z. L. Yang, B. Ren, G. K. Liu, P. P. Fang, Y. X. Jiang, D. Y. Wu, and Z. Q. Tian, Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces, Langmuir 22(25), 10372 (2006)

    Article  Google Scholar 

  29. Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy, Chem. Commun. (34), 3514 (2007)

  30. L. P. Xia, Z. Yang, S. Y. Yin, W. R. Guo, J. L. Du, and C. L. Du, Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres, Front. Phys. 9(1), 64 (2014)

    Article  Google Scholar 

  31. N. R. Jana, L. Gearheart, and C. J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 13(18), 1389 (2001)

    Article  Google Scholar 

  32. D. W. Lynch and W. R. Hunter, in: Handbook of Optical Constants of Solids, edited by E. D. Palik, New York: Academic Press, 1985, pp 350–356

  33. M. Grzelczak, J. Pérez-Juste, B. Rodríguez-González, and L. M. Liz-Marzán, Influence of silver ions on the growth mode of platinum on gold nanorods, J. Mater. Chem. 16(40), 3946 (2006)

    Article  Google Scholar 

  34. M. Grzelczak, J. Perez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, Optical properties of platinum-coated gold nanorods, J. Phys. Chem. C 111(17), 6183 (2007)

    Article  Google Scholar 

  35. L. L. Feng, X. C. Wu, L. R. Ren, Y. J. Xiang, W. W. He, K. Zhang, W. Y. Zhou, and S. S. Xie, Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth, Chem. Eur. J. 14(31), 9764 (2008)

    Article  Google Scholar 

  36. Z. L. Wang, M. Mohamed, S. Link, and M. El-Sayed, Crystallographic facets and shapes of gold nanorods of different aspect ratios, Surf. Sci. 440(1–2), L809 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Bo Liu or Xiao-Chun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JB., Long, L., Zhang, YS. et al. Optical properties of Au-core Pt-shell nanorods studied using FDTD simulations. Front. Phys. 11, 118501 (2016). https://doi.org/10.1007/s11467-015-0528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0528-3

Keywords

Navigation