Skip to main content
Log in

Preparation of bovine hemoglobin-imprinted polymer beads via the photografting surface-modified method

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

Molecularly imprinted polymers (MIPs), based on photografting surface-modified polystyrene beads as matrices, were prepared with acrylamide as the functional monomer, bovine hemoglobin as the template molecule and N, N′-methylene bisacrylamide as the crosslinker in a phosphate buffer. The results of IR, scanning electron microscope (SEM) and elemental analyses demonstrated the formation of a grafting polymer layer on the polystyrene-bead surface. Subsequent removal of the template left behind cavities on the surface of the polymer matrix with a shape and an arrangement of functional groups having complementary binding sites with the original template molecule. The adsorption studies showed that the imprinted polymers have a good adsorption capacity and specific recognition for bovine hemoglobin as the template molecule. Our results demonstrated that the polymer prepared via the photografting surface-modified method exhibited better selectivity for the template. Attempts to employ the new method in molecular imprinting techniques may introduce new applications for MIPs and facilitate probable protein separation and purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angew Chem Int Ed Engl, 1995, 34: 1812–1832

    Article  CAS  Google Scholar 

  2. Mosbach K. Molecular imprinting. Trends Biochem Sci, 1994, 19: 9–14

    Article  CAS  Google Scholar 

  3. Haupt K, Mosbach K. Molecularly imprinted polymers and their use biomimetic sensors. Chem Rev, 2000, 100: 2495–2504

    Article  CAS  Google Scholar 

  4. Hu S G, Li L, He X W. Comparison of trimethoprim molecularly imprinted polymers in bulk and in sphere as the sorbent for solid-phase extraction and extraction of trimethoprim from human urine and pharmaceutical tablet and their determination by high-performance liquid chromatography. Anal Chim Acta, 2005, 537: 215–222

    Article  CAS  Google Scholar 

  5. Hu S G, Li L, He X W. Solid-phase extraction of esculetin from the ash bark of Chinese traditional medicine by using molecularly imprinted polymers. J Chromatogr A, 2005, 1062: 31–37

    Article  CAS  Google Scholar 

  6. Guo H S, He X W, Li Y J. Imprinted polymeric film-based sensor for the detection of dopamine using cyclic voltammetry. Chinese J of Chem, 2003, 21: 1624–1629

    CAS  Google Scholar 

  7. Rong F, Feng X G, Li P, Yuan C W, Fu D G. Preparation of imprinted polymer microbeads using iniferter photografting surface-modified method Chinese science Bulletin, 2006, 51(13): 1504–1508

    Google Scholar 

  8. Anderson L, Sellergren B, Mosbach K. Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Lett, 1984, 25: 5211–5214

    Article  Google Scholar 

  9. Yoshida M, Hatate Y, Uezu K, Goto M, Furusaki S. Chiral-recognition polymer prepared by surface molecular imprinting technique. Colloids Surfaces A, 2000, 169: 259–269

    Article  CAS  Google Scholar 

  10. Vlatakis G, Andersson L I, Mosbach K. Drug assay using atibody mimics made by molecular imprinting. Nature, 1993, 361: 645–647

    Article  CAS  Google Scholar 

  11. Quaglia M, Chenon K, Hall A J. Target analogue imprinted polymers with affinity for folic acid and related compounds. J Am Chem Soc, 2001, 123: 2146–2154

    Article  CAS  Google Scholar 

  12. Fisher L, Muller R, Ekberg B. Direct enantioseparationary phase prepared by molecular imprinting. J Am Chem Soc, 1991, 113: 9358–9360

    Article  Google Scholar 

  13. Burow M, Minoura N. Molecular imprinting: synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase. Biochem Biophys Res Commun, 1986, 227: 419–422

    Article  Google Scholar 

  14. Shi H, Tsai W B, Garrison M D, Ferrari S, Ratner B D. Template-imprinted nanostructured surfaces for protein recognition. Nature, 1999, 398: 593–597

    Article  CAS  Google Scholar 

  15. Yang H H, Zhang S Q, Yang W, Chen X L, Zhuang Z X, Xu J G, Wang X R. Molecularly imprinted sol-gel nanotubes membrane for biochemical Separations. J Am Chem Soc, 2004, 126: 4054–4055

    Article  CAS  Google Scholar 

  16. Pang X S, Cheng G X, Lu S L, Tang E J. Synthesis of poly-acrylamide gel beads with electrostaticfunctional groups for the molecular imprinting of bovine serum albumin. Anal Bioanal Chem, 2006, 384: 225–230

    Article  CAS  Google Scholar 

  17. Mi H F, Guo M J, Zhao Z, Fan Y G, Wang C H, Shi L Q, Xia J J, Long Y. Protein-imprinted polymer with immobilized assistant recognition polymer chains. Biomaterials, 2006, 27: 4381–4387

    Article  Google Scholar 

  18. Lin T Y, Hu C H, Chou T C. Determination of albumin concentration by MIP-QCM sensor. Biosensors and Bioelectronics, 2004, 20: 75–81

    Article  CAS  Google Scholar 

  19. Bossi A, Bonini F, Turner A P F, Piletsky S A. Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosensors and Bioelectronics, 2007, 22: 1131–1137

    Article  CAS  Google Scholar 

  20. Venton D L, Gudipati E. Influence of protein on polysiloxane polymer formation—Evidence for induction of complementary protein-polymer interactions. Biochim Biophys Acta, 1995, 1250: 126–136

    Google Scholar 

  21. Rachkov A, Minoura N. Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim Biophys Acta, 2001, 1544: 255–266

    CAS  Google Scholar 

  22. Kempe M, Mosbach K. Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases. J Chromatogr A, 1995, 691: 317–323

    Article  CAS  Google Scholar 

  23. Nicholls I A, Rosengren J P. Bioseparation, 2002, 10: 301–305

    Article  Google Scholar 

  24. Zhang W Y, Li X, Zhu L L. Advances in preparation of surface molecularly imprinted materials. Modern Chemical Industry, 2005, 12: 20–23

    CAS  Google Scholar 

  25. Qin S H, Qiu K Y. Living radical polymerization and copolymerization of vinyl monomers initiated with novel iniferters. Acta Polymerica Sinica, 2002, 2: 127–136

    Google Scholar 

  26. Chen, Wang G J. Preparation of block and graft copolymer with iniferters. Polymer Bulletin, 2003, 4: 79–84

    Google Scholar 

  27. Tamayo F G, Titirici M M, Esteban A M. Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography. Anal Chim Acta, 2005, 542: 38–46

    Article  CAS  Google Scholar 

  28. Rukert B, Hall A, Sellergren B. Molecularly imprinted composite materials via iniferter-modified supports. J Mater Chem, 2002, 12: 2275–2280

    Article  Google Scholar 

  29. Pang X S, Cheng G X, Li R S, Lu S L, Zhang Y H. Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization. Anal Chim Acta, 2005, 550: 13–17

    Article  CAS  Google Scholar 

  30. Guo T Y, Xia Y Q, Hao G J, Song M D, Zhang B H. Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials, 2004, 25: 5905–5912

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukui Zhang.

Additional information

__________

Translated from Chemical Journal of Chinese Universities, 2008, 29(1): 64–70

About this article

Cite this article

Gai, Q., Liu, Q., Li, W. et al. Preparation of bovine hemoglobin-imprinted polymer beads via the photografting surface-modified method. Front. Chem. China 3, 370–377 (2008). https://doi.org/10.1007/s11458-008-0089-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-008-0089-x

Keywords

Navigation