Skip to main content
Log in

Particle shape effect on thermal conductivity and shear wave velocity in sands

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This study presents the correlations between quantified shape parameters and geotechnical properties for nine sand specimens. Four shape parameters, sphericity, convexity, elongation and slenderness, were quantified with two-dimensional microscopic images with the aid of image processing techniques. An instrumented oedometer cell is used to measure compressibility, thermal conductivity and shear wave velocity during loading, unloading and reloading stages. As the particle shape inherently determines the initial loose packing condition, initial void ratio and shape parameters are well correlated with compressibility. The applied stress in soils increases the interparticle contact area and contact quality; round particles tend to achieve higher thermal conductivity and shear wave velocity during stress-induced volume change. Multiple linear regression is implemented to capture the relative contributions of involved variables, revealing that the thermal evolution is governed by the initial packing density and particle shape. The experimental observations underscore the predominant effect that particle shape has on the geomechanical and physical properties upon stress-induced soil behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aloufi M, Santamarina JC (1995) Low and high strain macrobehaviour of grain masses: the effect of particle eccentricity. Trans ASAE 38:877–887. doi:10.13031/2013.27904

    Article  Google Scholar 

  2. Altuhafi F, O’Sullivan C, Cavarretta I (2012) Analysis of an image-based method to quantify the size and shape of sand particles. J Geotech Geoenviron Eng 139:1290–1307. doi:10.1061/(ASCE)GT.1943-5606.0000855

    Article  Google Scholar 

  3. ASTM-D421 (2007) Standard practice for dry preparation of soil samples for particle-size analysis and determination of soil constant. Annual Book of ASTM Standards, ASTM, West Conshohocken

    Google Scholar 

  4. ASTM-D5334 (2008) Standard test methods for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. Annual Book of ASTM Standards, ASTM, West Conshohocken

    Google Scholar 

  5. ASTM-D854 (2014) Standard test methods for specific gravity of soils by water pycnometer. Annual Book of ASTM Standards, ASTM, West Conshohocken

    Google Scholar 

  6. Barrett PJ (1980) The shape of rock particle, a critical review. Sedimentology 27:291–303. doi:10.1111/j.1365-3091.1980.tb01179.x

    Article  Google Scholar 

  7. Cavarretta I, Coop M, O’Sullivan C (2010) The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60:413–423. doi:10.1680/geot.2010.60.6.413

    Article  Google Scholar 

  8. Cho G, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness and strength: natural and crushed sands. J Geotech Geoenviron Eng 132:591–602. doi:10.1061/(ASCE)1090-0241(2006)132:5(591)

    Article  Google Scholar 

  9. Cubrinovski M, Ishihara K (2002) Maximum and minimum void ratio characteristics of sands. Soils Found 42:65–78. doi:10.3208/sandf.42.6_65

    Article  Google Scholar 

  10. Druckrey AM, Alshibli KA (2016) 3D finite element modeling of sand particle fracture based on in situ X-ray synchrotron imaging. Int J Numer Anal Methods Geomech 40:105–116. doi:10.1002/nag.2396

    Article  Google Scholar 

  11. Fonseca J, O’Sullivan C, Coop MR, Lee PD (2012) Non-invasive characterization of particle morphology of natural sands. Soils Found 52:712–722. doi:10.1016/j.sandf.2012.07.011

    Article  Google Scholar 

  12. Fredlund MD, Fredlund DG, Wilson GW (2000) An equation to represent grain-size distribution. Can Geotech J 37:817–827. doi:10.1139/t02-080

    Article  Google Scholar 

  13. Jia X, Williams RA (2001) A packing algorithm for particles of arbitrary shapes. Powder Technol 120:175–186. doi:10.1016/S0032-5910(01)00268-6

    Article  Google Scholar 

  14. Kim KY, Suh HS, Yun TS et al (2016) Effect of particle shape on the shear strength of fault gouge. Geosci J 20:351–359. doi:10.1007/s12303-015-0051-0

    Article  Google Scholar 

  15. Krumbein WC (1941) Measurement and geological significance of shape and roundness of sedimentary particles. J Sediment Petrol 11:64–72. doi:10.1306/d42690f3-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  16. Krumbein WC, Sloss LL (1963) Stratigraphy and sedimentation, 2nd edn. Freeman and Company, San Francisco

  17. Lee J-S, Santamarina JC (2005) Bender elements: performance and signal interpretation. J Geotech Geoenviron Eng 131:1063–1070. doi:10.1061/(ASCE)1090-0241(2005)131:9(1063)

    Article  Google Scholar 

  18. Lee J, Yun TS, Choi S (2015) The effect of particle size on thermal conduction in granular mixtures. Materials 8:3975–3991. doi:10.3390/ma8073975

    Article  Google Scholar 

  19. Lee JS, Seo SY, Lee C (2015) Geotechnical and geophysical characteristics of muskeg samples from Alberta, Canada. Eng Geol 195:135141. doi:10.1016/j.enggeo.2015.04.030

    Article  Google Scholar 

  20. Lim K, Kawamoto R, Ando E, Viggiani G (2016) Multiscale characterization and modeling of granular materials through a computational mechanics avatar: a case study with experiment. Acta Geotech 11:243–253. doi:10.1007/s11440-015-0405-9

    Article  Google Scholar 

  21. Mesri G, Vardhanabhuti B (2009) Compression of granular materials. Can Geotech J 46:369–392. doi:10.1139/T08-123

    Article  Google Scholar 

  22. Nasirian A, Cortes DD, Dai S (2015) The physical nature of thermal conduction in dry granular media. Geotech Lett 5:1–5. doi:10.1680/geolett.14.00073

    Article  Google Scholar 

  23. Rodriguez JM, Edeskär T, Knutsson S (2013) Particle shape quantities and measurement techniques: a review. Electron J Geotech Eng 18:169–198

    Google Scholar 

  24. Santamarina JC, Cho GC (2004) Soil behaviour: the role of particle shape. In: Advances in geotechnical engineering. Proceedings of the skempton conference, pp 604–617

  25. Santamarina JC, Klein KA, Fam MA (2001) Soils and waves: particulate materials behavior, characterization and process monitoring. Wiley, New York

    Google Scholar 

  26. Shin H, Santamarina JC (2012) The role of particle angularity on the mechanical behavior of granular mixtures. J Geotech Geoenviron Eng 139:483. doi:10.1061/(ASCE)GT.1943-5606.0000768

    Google Scholar 

  27. Wadell H (1932) Volume, shape, and roundness of rock particles. J Geol 40:443–451

    Article  Google Scholar 

  28. Yasin S, Safiullah M (2003) Effect of particle characteristics on the strength and volume change behaviour of sand. J Civ Eng 31:127–148

    Google Scholar 

  29. Yun TS, Evans M (2010) Three-dimensional random network model for thermal conductivity in particulate materials. Comput Geotech 37:991–998. doi:10.1016/j.compgeo.2010.08.007

    Article  Google Scholar 

  30. Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granul Matter 10:197–207. doi:10.1007/s10035-007-0051-5

    Article  MATH  Google Scholar 

  31. Zeng YW, Jin L, Du X, Gao R (2015) Refined modeling and movement characteristics analyses of irregularly shaped particles. Int J Numer Anal Methods Geomech 39:388–408. doi:10.1002/nag.2313

    Article  Google Scholar 

  32. Zunic J, Rosin PL (2004) A new convexity measure for polygons. IEEE Trans Pattern Anal Mach Intell 26:923–934

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea CCS R&D Center (KCRC) Grant and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (Nos. 2012-0008929, 2011-0030040, 2016R1A2B4011292) and was supported by a Grant (16-RDRP-B076564-03) from Regional Development Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Sup Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Suh, H.S., Yoon, B. et al. Particle shape effect on thermal conductivity and shear wave velocity in sands. Acta Geotech. 12, 615–625 (2017). https://doi.org/10.1007/s11440-017-0524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0524-6

Keywords

Navigation