Skip to main content
Log in

The effect of the nanogranular nature of shale on their poroelastic behavior

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Natural composite materials are highly heterogeneous porous materials, with porosities that manifest themselves at scales much below the macroscale of engineering applications. A typical example is shale, the transverse isotropic sealing formation of most hydrocarbon bearing reservoirs. By means of a closed loop approach of microporomechanics modeling, calibration and validation of elastic properties at multiple length scales of shale, we show that the nanogranular nature of this highly heterogeneous material translates into a unique poroelastic signature. The self-consistent scaling of the porous clay stiffness with the clay packing density minimizes the anisotropy of the Biot pore pressure coefficients; whereas the intrinsic anisotropy of the elementary particle translates into a pronounced anisotropy of the Skempton coefficients. This new microporoelasticity model depends only on two shale-specific material parameters which neatly summarize clay mineralogy and bulk density, and which makes the model most appealing for quantitative geomechanics, geophysics and exploitation engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. In fact, if C I ij  = C I ij (η) scaled perfectly linear with the packing density, α I11 (η) and α I33 (η) would take exactly the same values. Indeed, using \({{\mathbb{C}}}_{\hom}^{\rm I}=\left(2\eta -1\right) {{\mathbb{C}}}^{s}\) for the range 0.5 < η < 1, in (44) , the corresponding tensor of Biot pore pressure coefficients is \({\varvec{\alpha}}^{\rm I}=2\left(1-\eta \right) {{\mathbf{1}}}.\)

References

  1. Abousleiman YN, Cheng AH, Cui L (1996) Mandel’s problem revisited. Geotechnique 46:195–197

    Google Scholar 

  2. Abousleiman YN, Cui L (1998) Poroelastic solutions in transversely isotropic media for wellbore and cylinder. Int J Solids Struct 35:4905–4929

    Article  Google Scholar 

  3. Abousleiman Y, Ekbote S (2005) Solutions for the inclined borehole in a porothermoelastic transversely isotropic media. J Appl Mech ASME 72:102–114

    Article  Google Scholar 

  4. Al-Tahini A, Abousleiman Y, Brumley J (2006) Acoustic and quasistatic laboratory measurement and calibration of the pore pressure prediction coefficient in the poroelastic theory. 2005 SPE Annual Technical Conference, Society of Petroleum Engineers, Dallas, Texas, 9–12 October

  5. Antonangeli D, Krish M, Fiquet G, Badro J, Farber DL, Bossak A, Merkel S (2005) Aggregate and single-crystalline elasticity of hcp cobalt at high pressure. Phys Rev B 72:134303-1–134303-7

    Article  Google Scholar 

  6. Auld BA (1990) Acoustic Fields and Waves in Solids. Robert E Krieger Publishing Company, Malabar

    Google Scholar 

  7. Bennett RH, O’Brien NR, Hulbert MH (1991) Determinants of clay and shale microfabric signatures: processes and mechanisms. In: Bennett R, Bryant W, Hulbert M (eds) Microstructure of fine grained sediments: from mud to shale, chap 2. Springer, New York, pp 5–32

    Google Scholar 

  8. Blangy JD (1992) Integrated seismic lithologic interpretations: the petrophysical basis. PhD Dissertation, Stanford University

  9. Berge PA, Berryman JG (1995) Realizability of negative pore compressibility in poroelastic composites. J Appl Mech 62:1053–1062

    Google Scholar 

  10. Berryman JG (2002) Extension of poroelastic analysis to doubleporosity materials: new technique in microgeomechanics. J Eng Mech (ASCE) 128(8):840–847

    Article  Google Scholar 

  11. Berryman JG, Milton GW (1991) Exact results for generalized Gassmann’s equations in composite porous media with two constituents. Geophysics 56:1950–1960

    Article  Google Scholar 

  12. Berryman JG, Wang HF (1995) The elastic coefficients of double-porosity models for fluid transport in jointed rock. J Geophys Res 100:24611–24627

    Article  Google Scholar 

  13. Bobko C, Ulm F-J (2007) The nano-mechanical morphology of shale (in review)

  14. Brown RJS, Korringa J (1975) On the dependence of the elastic properties of a porous rock on the compressibility of a pore fluid. Geophysics 40:608–616

    Article  Google Scholar 

  15. Buchalter BJ, Bradley RM (1994) Orientational order in amorphous packings of ellipsoids. Europhys Lett 26(3):159–164

    Article  Google Scholar 

  16. Budiansky B (1965) On the elastic moduli of some heterogeneous materials. J Mech Phys Solids 13:223–227

    Article  Google Scholar 

  17. Carroll MM (1980) Mechanical response of fluid-saturated porous materials. Theoretical and applied mechanics. In: Rimrott FPJ, Tabarrok B (eds) Proceedings of 15th international congress of theoretical and applied mechanics, Toronto, Amsterdam, 17–23 August 1980, pp 251–262

  18. Castagna JP, Batzle ML, Eastwood RL (1985) Relationship between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):571–581

    Article  Google Scholar 

  19. Castagna JP, Batzle ML, Kan TK (1993) Rock Physics—the link between rock properties and AVO response. Inv Geophys 8:135–171

    Google Scholar 

  20. Chateau X, Dormieux L (2002) Micromechanics of saturated and unsaturated porous media. Int J Numer Anal Meth Geomech 26:1231–1243

    Article  Google Scholar 

  21. Coehlo D, Thovert J-F, Adler PM (1997) Geometrical and transport properties of random packings of spheres and aspherical particles. Phys Rev E 55(2):1959–1978

    Article  Google Scholar 

  22. Constantinides G, Ravi Chandran KS, Ulm F-J, Van Vliet KJ (2006) Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mat Sci Eng A 430:189–202

    Article  Google Scholar 

  23. Constantinides G, Ulm F-J (2007) The nanogranular nature of C-S-H. J Mech Phys Solids 55:64–90

    Article  Google Scholar 

  24. Coussy O (1995) Mechanics of porous media. Wiley, Chichester

    Google Scholar 

  25. Coussy O (2004) Poromechanics. Wiley, Chichester

    Google Scholar 

  26. Delafargue A, Ulm F-J (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int J Solids Struct 41:7351–7360

    Article  Google Scholar 

  27. Dewhurst DN, Siggins AF (2006) Impact of fabric, microcracks and stress field on shale anisotropy. Geophys J Int 165:135–148

    Article  Google Scholar 

  28. Diamond S (2000) Mercury porosimetry. An inappropiate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30:1517–1525

    Article  Google Scholar 

  29. Domnesteanu P, McCann C, Sothcott J (2002) Velocity anisotropy and attenuation of shale in under- and overpressured conditions. Geophys Prosp 50:487–503

    Article  Google Scholar 

  30. Dormieux L, Kondo D, Ulm F-J (2006) Microporomechanics. Wiley, Chichester

    Google Scholar 

  31. Dormieux L, Molinari A, Kondo D (2002) Micromechanical approach to the behaviour of poroelastic materials. J Mech Phys Solids 50:2203–2231

    Article  Google Scholar 

  32. Dormieux L, Lemarchand E, Sanahuja J (2006) Macroscopic behavior of porous materials with lamellar microstructure. Comptes Rendus Mecanique 334(5):304–310

    Article  Google Scholar 

  33. Draege A, Jakobsen M, Johansen TA (2006) Rock physics modelling of shale diagenesis. Petrol Geosci 12:49–57

    Article  Google Scholar 

  34. Galin LA (1961) Contact problems in theory of elasticity. Sneddon IN (eds), translated by Moss H, North Carolina State College

  35. Gassmann F (1951) On the elasticity of porous media. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96:1–23 (in German)

  36. Grim RE (1988) The history of the development of clay mineralogy. Clays Miner 36(2):97–101

    Article  Google Scholar 

  37. Guéguen Y, Palciauskas V (1994) Introduction to the physics of rocks. Princeton University Press, Princeton

    Google Scholar 

  38. Hall P, Mildner D, and Borst R (1983) Pore size distribution of shaly rock by small angle neutron scattering. Appl Phys Lett 43(3):252–254

    Article  Google Scholar 

  39. Han D-H, Nur A, Morgan D (1986) Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51:2093–2107

    Article  Google Scholar 

  40. Hellmich C, Barthélémy J-F, Dormieux L (2004) Mineral-collagen interactions in elasticity of bone ultrastructure—a continuum micromechanics approach. Eur J Mech A Solids 23:783–810

    Article  Google Scholar 

  41. Hellmich C, Ulm F-J (2005) Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanics investigation. Transp Porous Med 58:243–268

    Article  Google Scholar 

  42. Hellmich Ch, Ulm F-J, Dormieux L (2004) Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions?—Arguments from a multi-scale approach. Biomech Model Mechanobiol 2:219–238

    Article  Google Scholar 

  43. Helnwein P (2001) Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput Methods Appl Mech Eng 190:2753–2770

    Article  Google Scholar 

  44. Hershey AV (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME J Appl Mech 21:236–240

    Google Scholar 

  45. Heyliger P, Ledbetter H, Kim S (2003) Elastic constants of natural quartz. J Acoust Soc Am 114(2):644–650

    Article  Google Scholar 

  46. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13:213–222

    Article  Google Scholar 

  47. Hornby B (1998) Experimental laboratory determination of the dynamic elastic properties of wet, drained shales. J Geophys Res 103(B12):29,945–29,964

    Article  Google Scholar 

  48. Hornby B, Schwartz L, Hudson J (1994) Anisotropic effective medium modeling of the elastic properties of shales. Geophysics 59(10):1570–1583

    Article  Google Scholar 

  49. Jakobsen M, Hudson JA, Johansen TA (2003) T-matrix approach to shale acoustics. Geophys J Int 154:533–558

    Article  Google Scholar 

  50. Jakobsen M, Johansen TA (2000) Anisotropic approximations for mudrocks: A seismic laboratory study. Geophysics 65(6):1711–1725

    Article  Google Scholar 

  51. Jones LEA, Wang HF (1994) Ultrasonic velocities in Cretaceous shales from the Williston basin. Geophysics 46:288–297

    Article  Google Scholar 

  52. Kaarsberg EA (1959) Introductory studies of natural and artificial argillaceous aggregates by sound propagation and X-ray diffraction methods. J Geology 67:447–472

    Article  Google Scholar 

  53. Katti D, Schmidt S, Ghosh P, Katti K (2005) Modeling the response of pyrophyllite interlayer to applied stress using steered molecular dynamics. Clays Clay Miner 53(2):171–178

    Article  Google Scholar 

  54. Kröner E (1958) Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Z Phys 151:504–518

    Article  Google Scholar 

  55. Kröner E (1978) Self-consistent scheme and graded disorder in polycrystal elasticity. J Phys F Met Phys 8:2261–2267

    Article  Google Scholar 

  56. Laws N (1985) A note of penny-shaped cracks in transversely isotropic materials. Mech Mater 4:209–212

    Article  Google Scholar 

  57. Marion D, Nur A, Yin H, Han D (1992) Compressional velocity and porosity in sand-clay mixtures. Geophysics 57(4):554–563

    Article  Google Scholar 

  58. Mavko G, Mukerji T, Dvorkin J (1998) The Rock Physics Handbook. Cambridge University Press, Cambridge

    Google Scholar 

  59. Mitchell J (1993) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  60. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  Google Scholar 

  61. Onoda GY, Liniger EG (1990) Random loose packings of uniform spheres and the dilatancy onset. Phys Rev Lett 64(22):2727–2730

    Article  Google Scholar 

  62. Prasad M, Kopycinska M, Rabe U, Arnold W (2002) Measurement of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys Res Lett 29(8):1172,13-1–1172,13-4

    Article  Google Scholar 

  63. Pratson LF, Stroujkova A, Herrick D, Boadu F, Malin P (2003) Predicting seismic velocity and other rock properties from clay content only. Geophysics 68(6):1847–1856

    Article  Google Scholar 

  64. Rice JR, Cleary MP (1976) Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241

    Google Scholar 

  65. Sayers CM (1994) The elastic anisotropy of shales. J Geophys Res 99(B1):767–774

    Article  Google Scholar 

  66. Sayers C (1999) Stress-dependent seismic anisotropy of shales. Geophysics 64(1):93–98

    Article  Google Scholar 

  67. Savage WZ, Braddock WA (1991) A model for hydrostatic consolidation of Pierre shale. Int J Rock Mech Min Sci Geomech Abstr 28(5):345–354

    Article  Google Scholar 

  68. Scott TE, Abousleiman Y (2005) Acoustic measurements of the anisotropy of dynamic elastic and poromechanics moduli under three stress/strain path. J Eng Mech (ASCE) 131(9):937–946

    Article  Google Scholar 

  69. Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4:143–147

    Article  Google Scholar 

  70. Strang G (1998) Introduction to linear algebra, 3rd edn. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  71. Suvorov AP, Dvorak GJ (2002) Rate Form of the Eshelby and Hill Tensors. I J Sol Struct 39:5659–5678

    Article  Google Scholar 

  72. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966

    Article  Google Scholar 

  73. Thomsen L (2001) Seismic anisotropy. Geophysics 66:40–41

    Article  Google Scholar 

  74. The MathWorks, Inc (2006) Optimization toolbox for MATLAB, fmincon function. Online manual, http://www.mathworks.com

  75. Ulm F-J, Abousleiman Y (2006) The nanogranular nature of shale. Acta Geotechnica 1(2):77–88

    Article  Google Scholar 

  76. Ulm F-J, Constantinides G, Delafargue A, Abousleiman Y, Ewy R, Duranti L, McCarty DK (2005) Material invariant poromechanics properties of shales. In: Abousleiman Y, Cheng AH-D, Ulm F-J (eds) Poromechanics III. Biot Centennial (1905–2005), A.A. Balkema Publishers, London, pp 637–644

    Google Scholar 

  77. Ulm F-J, Delafargue A, Constantinides G (2005) Experimental Microporomechanics. In: Dormieux L, Ulm F-J (eds) Applied micromechanics of porous materials. Springer, Wien, pp 207–288

    Chapter  Google Scholar 

  78. Vanorio T, Prasad M, Nur A (2003) Elastic properties of dry clay mineral aggregates suspensions and sandstones. Geophys J Int 155:319–326

    Article  Google Scholar 

  79. Wang Z (2002) Seismic anisotropy in sedimentary rocks. Part 1: a single plug laboratory method; Part 2: laboratory data. Geophysics 67(5):1415–1422 (part I) and 1423–1440 (part II)

  80. Wang Z, Cates ME, Langan RT (1998) Seismic monitoring of CO2 flood in a carbonate reservoir: a rock physics study. Geophysics 63(5):1604–1617

    Article  Google Scholar 

  81. Wang Z, Wang H, Cates ME (2001) Effective elastic properties of solid clays. Geophysics 66(2):428–440

    Article  Google Scholar 

  82. Zaoui A (1997) Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet P (ed) Continuum Micromechanics. Springer, Wien, pp 291–347

    Google Scholar 

  83. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech (ASCE) 128(8):808–816

    Article  Google Scholar 

  84. Zimmerman RW (2000) Coupling in poroelasticity and thermoelasticity. Int J Rock Mech and Min Sci 37:79–87

    Article  Google Scholar 

Download references

Acknowledgement

The financial and material support for this study by the MIT-OU GeoGenome Industry Consortium (G2IC) is gratefully acknowledged. The shales G-01, (02, 03, 04, 05, 06, 07) to G-08 stem from shale cuttings of Chevron, for which the mineralogy, porosimetry measurements, and dynamic measurements were provided by the team of Dr. Russ Ewy at Chevron; from shale cuttings of Hydro (dark shale, G-09; Pierre shale, G-10) and the PoroMechanics Institute of the University of Oklahoma at Norman, for which the mineralogy and porosity measurements were provided by the team of Prof. Younane Abousleiman at OU. The Nanoindentation results were obtained by Christopher Bobko at MIT, whose advice and suggestions are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Josef Ulm.

Appendix

Appendix

1.1 Hill concentration tensor

Within the framework of microporomechanics, the Hill concentration tensor (or P-tensor) characterizes the interaction between the different phases, and it is expressed as [40]:

$${\mathbb{P}}_{ijkl}^{0}= \left.-\left(\partial^{2}\left(\int_{\Upomega}G_{ik}^{0}(\underline{x}-\underline{x}^{\prime}){\rm d}\Upomega \right)\right/\partial x_{j}\partial x_{j}\right)_{\left(ij\right) \left(kl\right)}$$
(55)

where the Green’s function \(G_{ik}^{0}(\underline{x}-\underline{x}^{\prime})\) expresses the displacement at point \(\underline{x}\) in a linear elastic solid medium of stiffness \({{\mathbb{C}}}^{0},\) resulting from a unit force applied at point \(\underline{x}^{\prime}\) in the medium. The P-tensor is determined by the stiffness properties of the matrix phase and the shape of the inclusion phase. Integral expressions of the P-tensor for ellipsoidal inclusions in a transversely isotropic media were developed by Laws [56], which in a slightly different form reads [71]:

$$P_{ijkl}=\frac{1}{16\pi}\left({\mathcal{M}}_{kijl}+{\mathcal{M}}_{kjil}+ {\mathcal{M}}_{lijk}+{\mathcal{M}}_{ljik}\right) \label{Pijkl}$$
(56)

where,

$${\mathcal{M}}_{kijl}=\int_{S\left(\omega \right)}\frac{a_{1}a_{2}a_{3}}{\left(a_{1}^{2}\omega_{1}^{2}+a_{2}^{2}\omega_{2}^{2}+a_{3}^{2}\omega_{3}^{2}\right)^{3/2}}\Upgamma_{kj}^{-1}\left({\varvec{\omega}}\right) \omega_{i}\omega_{l}dS\left({\varvec{\omega}}\right)$$
(57)

Parameters a 1, a 2, a 3 relate to the shape of the ellipsoid, \({\rm d}S\left({\varvec{\omega}}\right)\) is the surface element of a unit ellipsoid of components ω1, ω2, ω3, and \(\Upgamma_{kj}\left({\varvec{\omega}}\right) =C_{ijkl}\omega_{j}\omega_{l}\) represents the Christoffel matrix denoting the stiffness of the anisotropic matrix. For the case of a transverse isotropic media and spherical inclusions, (57) can be specialized by taking advantage of spherical symmetries. The unit vector \({\varvec{\omega}}\) is expressed in spherical coordinates θ ∈ [0,π]; ϕ ∈ [0, 2 π] by the following transformations:

$$\omega_{1} =\sin \theta \cos \phi$$
(58)
$$\omega_{2} =\sin \theta \sin \phi$$
(59)
$$\omega_{3} =\cos \theta$$
(60)

The non-zero terms of (56) are reduced to line integrals in \(\xi =\cos \theta, {\rm d}\xi =-\sin \theta {\rm d}\theta,\) whose evaluations are achieved numerically using standard software packages such as Matlab. The final expressions of the elements of the P-tensor, which is heavily used in the multi-scale model of shale herein developed, are the following (see [40], except for a misprint corrected in the expressions below):

$$\begin{aligned}P_{11}&= \frac{1}{16}\int\limits_{-1}^{1}\frac{1}{D_{1}}\left(\xi^{2}-1\right)\left(-8\xi^{4}C_{33}C_{44}\right.\\\, & -3\xi^{4}C_{12}C_{33}-2\xi^{4}C_{13}^{2}+3\xi^{4}C_{12}C_{44}\\ \, & -5\xi^{4}C_{11}C_{44}+5\xi^{4}C_{11}C_{33}-4\xi^{4}C_{13}C_{44}\\\,&+6\xi^{4}C_{44}^{2}-6\xi^{2}C_{44}^{2} +4\xi^{2}C_{13}C_{44}\\\, &+3\xi^{2}C_{12}C_{33}-5\xi^{2}C_{11}C_{33}-6\xi^{2}C_{12}C_{44}\\\, & +2\xi^{2}C_{13}^{2} +10\xi^{2}C_{11}C_{44}+3C_{12}C_{44}\\\, & -5C_{11}C_{44}){\rm d}\xi\end{aligned}$$
(61)
$$\begin{aligned}P_{12} &= -\frac{1}{16}\int\limits_{-1}^{1}\frac{1}{D_{1}}\left(\xi -1\right)^{2}\left(\xi +1\right)^{2}\left(C_{12}C_{44}\right.\\ &\quad -\xi^{2}C_{12}C_{44}+\xi^{2}C_{12}C_{33}+C_{11}C_{44}\\& \quad -\xi^{2}C_{11}C_{44}+\xi^{2}C_{11}C_{33}-2\xi^{2}C_{13}^{2}\\&\quad\left.-\;4\xi^{2}C_{13}C_{44}-2\xi^{2} C_{44}^{2}\right){\rm d}\xi\\\end{aligned}$$
(62)
$$P_{13}=-\frac{1}{4}\left(C_{13}+C_{44}\right) \int\limits_{-1}^{1}\frac{\xi^{2}\left(\xi^{2}-1\right)}{D_{2}}{\rm d}\xi$$
(63)
$$P_{33}=\frac{1}{2}\int\limits_{-1}^{1}\frac{\xi^{2}\left(-C_{11}+C_{11}\xi^{2}-C_{44}\xi^{2}\right)}{D_{2}}{\rm d}\xi$$
(64)
$$\begin{aligned}P_{44}=&-\frac{1}{16}\int\limits_{-1}^{1}\frac{1}{D_{1}}\left(3\xi^{2}C_{11}^{2}-2\xi^{6}C_{13}^{2}-C_{11}^{2}\right.\\\,&-4\xi^{6}C_{11}C_{44}-8\xi^{6}C_{13}C_{44}-4\xi^{6}C_{33}C_{44}\\\, & +3\xi^{6}C_{11}C_{33}-3\xi^{4}C_{11}^{2}+C_{11}C_{22}\\\,&+\xi^{6}C_{11}^{2}-\xi^{6}C_{11}C_{12} -\xi^{6}C_{12}C_{33}\\\, &+4\xi^{4}C_{12}C_{13}-2\xi^{2}C_{12}C_{13}+2\xi^{6}C_{11}C_{13}\\\, & +2\xi^{4}C_{13}^{2}+\xi^{4}C_{12}C_{33}+8\xi^{4}C_{11}C_{44}\\\, &-3\xi^{4}C_{11}C_{33}-4\xi^{2}C_{11}C_{44} +8\xi^{4}C_{13}C_{44}\\\, &-4\xi^{4}C_{11}C_{13}+3\xi^{4}C_{11}C_{12}-3\xi^{2}C_{11}C_{12}\\\, &\left.-2\xi^{6}C_{12}C_{13}+2\xi^{2}C_{11}C_{13}\right){\rm d}\xi\\\end{aligned}$$
(65)

where

$$D_{1}=\left(\xi^{2}C_{11}-C_{11}-2\xi^{2}C_{44}-\xi^{2}C_{12}+C_{12}\right) \left(D_{2}\right)$$
(66)
$$\begin{aligned}D_{2}=&-\xi^{4}C_{33}C_{44}+2\xi^{2}C_{13}C_{44}-\xi^{2}C_{11}C_{33}\\\, &-2\xi^{4}C_{13}C_{44}+\xi^{4}C_{11}C_{33}+2\xi^{2}C_{11}C_{44}\\\, &+\xi^{2}C_{13}^{2} -\xi^{4}C_{11}C_{44}-\xi^{4}C_{13}^{2}-C_{11}C_{44}\\\end{aligned}$$
(67)

1.2 Elastic constants from UPV measurements

The inversion of UPV measurements to elasticity constants of transversely isotropic media is achieved through the following relations [6]:

$$C_{11}^{\rm UPV} =\rho V_{\rm P1}^{2}$$
(68)
$$C_{33}^{\rm UPV} =\rho V_{\rm P3}^{2}$$
(69)
$$C_{66}^{\rm UPV} =\frac{1}{2}\left(C_{11}^{\rm UPV}-C_{12}^{\rm UPV}\right) =\rho V_{S1}^{2}$$
(70)
$$C_{44}^{\rm UPV} = \rho V_{\rm S3}^{2}$$
(71)
$$C_{13}^{\rm UPV} = -C_{44}+\alpha \sqrt{\left(C_{11}+C_{44}-2\rho V_{45}^{2}\right) \left(C_{33}+C_{44}-2\rho V_{45}^{2}\right)}$$
(72)

where:

V P1 :

pure longitudinal mode in bedding direction

V P3 :

pure longitudinal mode normal to bedding

V S1 :

pure shear mode polarized normal to axis of symmetry

V S3 :

pure shear modes polarized normal to axis of symmetry

V 45 :

quasi-longitudinal or quasi-shear wave measured at 45° from axis of symmetry

α :

(+ 1) for quasi-longitudinal (qP) wave, (−1) for quasi-shear (qS) wave.

1.3 Experimental information on shale validation data set #2 (VDS-II)

Table 9 provides a summary of the relevant experimental information and testing conditions for the shale specimens documented by Jones and Wang [51], Hornby [47], Jakobsen and Johansen [50], Domnesteanu et al. [29], and Dewhurst and Siggins [27]. The macroscopic elasticity and material composition data of these references is used for the validation of the microporomechanical model at the macroscopic scale (level II).

Table 9 Summary of shale specimens and experimental procedures for the VDS-II data set, which was collected from open literature

1.4 Mineral densities

Table 10 provides the density of minerals used for translating the mineralogy data in the CDS, VDS-I, and VDS-II data sets into volume fractions.

Table 10 Density information of some minerals present in shale

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortega, J.A., Ulm, FJ. & Abousleiman, Y. The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotech. 2, 155–182 (2007). https://doi.org/10.1007/s11440-007-0038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-007-0038-8

Keywords

Navigation