Skip to main content
Log in

Relaxation mechanism analysis of synthetic fused quartz glass investigated by electrical impedance spectra

  • Article
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

The synthetic fused quartz glasses with bare metal impurities have been analyzed by temperature-dependent electrical impedance spectroscopy. The complex electric impedance and the overlapping of the normalized dielectric modulus imply the single mechanism of dielectric and conduction relaxation in the fused quartz glass. Besides, the dependence of conductivity on temperature may attribute to the predominant electric relaxation to the delocalized or long range electronic hopping between the nonbridged dangling oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ikushima AJ, Fujiwara T, Saito K (2000) Silica glass: a material for photonics. J Appl Phys 88:1201–1213

    Article  Google Scholar 

  2. Xue SW, Proulx P, Boulos MI (2003) Effect of the coil angle in an inductively coupled plasma torch: a novel two-dimensional model. Plasma Chem Plasma Process 23:245–263

    Article  Google Scholar 

  3. Baird WH (2009) An introduction to inertial navigation. Am J Phys 77:844–847

    Article  Google Scholar 

  4. van Wiggeren GD, Roy R (1998) Optical communication with chaotic waveforms. Phys Rev Lett 81:3547–3550

    Article  Google Scholar 

  5. Lee S (2001) Photolithography and selective etching of an array of quartz tuning fork resonators with improved impact resistance characteristics. Jpn Appl Phys 40:5164–5167

    Article  Google Scholar 

  6. Ihlemann J (1992) Excimer laser ablaettion of fused-silica. Appl Surf Sci 54:193–200

    Article  Google Scholar 

  7. Zhang J, Sugioka K, Takahashi T et al (2000) Dual-beam ablation of fused silica by multiwavelength excitation process using KrF excimer and F2 lasers. Appl Phys A 71:23–26

    Google Scholar 

  8. Chen YY, Wang J, Du JK et al (2013) Effects of mass layer imperfect bonding on the electrical impedance of a quartz crystal microbalance. Sci China Phys Mech Astron 56:2186–2191

    Article  Google Scholar 

  9. Liu GQ, Huang X, Xia H et al (2013) Magnetoacoustic tomography with current injection. Chin Sci Bull 58:3600–3606

    Article  Google Scholar 

  10. Pang Y, Liu CS (2013) Continuum description for the characteristic resistance sensed by a cylinder colliding against granular medium. Sci China Phys Mech Astron 56:1428–1436

    Article  Google Scholar 

  11. Fanara S, Behrens H (2011) Proton conduction in hydrous glasses of the join CaAl2Si2O8-CaMgSi2O6: an impedance and infrared spectroscopic study. J Chem Phys 134:505–515

    Article  Google Scholar 

  12. Goswami M, Deshpande SK, Kumar R et al (2010) Electrical behaviour of Li2O–ZnO–SiO2 glass and glass-ceramics system. J Phys Chem Solids 71:739–744

    Article  Google Scholar 

  13. Rangarajan B, Bharadwaja SSN, Furman E et al (2010) Impedance spectroscopy studies of fresnoites in BaO–TiO2–SiO2 system. J Am Ceram Soc 93:522–530

    Article  Google Scholar 

  14. Zhang QL, Liu Y, Yang H (2013) Voltage-dependent low-field resistivity of CaTiO3: Sc ceramics. J Mater Sci: Mater Electron 24:999–1003

    Google Scholar 

  15. Peng F, Luo D, Sun H et al (2013) Diameter-controlled growth of aligned single-walled carbon nanotubes on quartz using molecular nanoclusters as catalyst precursors. Chin Sci Bull 58:433–439

    Article  Google Scholar 

  16. Wang X, Shao Y, Gong P et al (2012) Effect of thermal cycling on the mechanical properties of Zr41Ti14Cu12.5Ni10Be22.5 alloy. Sci China Phys Mech Astron 55:2357–2361

    Article  Google Scholar 

  17. Zhao L, Feng JC, Tian XY et al (2011) Brazing of micrograin-filled quartz fiber reinforced silica composites and Invar using Ag21Cu4.5Ti alloy. Chin Sci Bull 56:2869–2873

    Article  Google Scholar 

  18. Devautour-Vinot S, Cambon O, Prud’homme N et al (2007) Complex impedance spectroscopy of alkali impurities in as-grown, irradiated and annealed quartz. J Appl Phys 102:102–111

    Article  Google Scholar 

  19. Szu SP, Lin CY (2003) AC impedance studies of copper doped silica glass. Mater Chem Phys 82:295–300

    Article  Google Scholar 

  20. Yaohua Quartz Technology Development Co, Ltd., http://www.yaohuaquartz.com

  21. Tielburger D, Merz R, Ehrenfels R et al (1992) Thermally activated relaxation processes in vitreous silica - an investigation by Brillouin-scattering at high-pressures. Phys Rev B 45:2750–2760

    Article  Google Scholar 

  22. Ravaine D, Diard JP, Souquet JL (1975) Dielectric relaxation in alkali-metal oxide conductive glasses studied by complex impedance measurements. J Chem Soc 71:1935–1941

    Google Scholar 

  23. Kajihara K, Skuja L, Hirano M et al (2004) Interconversion between non-bridging oxygen hole center and peroxy radical in F2-laser-irradiated SiO2 glass. J Non-Cryst Solids 345:219–223

    Article  Google Scholar 

  24. Zhu MK, Tang JL, Ke N et al (2011) Annealing effect on relaxor behaviours of spark plasma sintered Pb(Sc1/2Nb1/2)O3 superfine ceramics. Adv Appl Ceram 110:74–79

    Article  Google Scholar 

  25. Ngai KL, Jonscher AK, White CT (1979) Origin of the universal dielectric response in condensed matter. Nature 277:185–189

    Article  Google Scholar 

  26. Jonscher AK (1977) Universal dielectric response. Nature 267:673–679

    Article  Google Scholar 

  27. Suresh S, Prasad M, Mouli VC (2010) AC conductivity and impedance measurements in alkali boro-tellurite glasses. J Non-Cryst Solids 356:1599–1603

    Article  Google Scholar 

  28. Ahlawat N, Sanghi S, Agarwal A et al (2008) Investigation of near constant loss contribution to conductivity in lithium bismo-silicate glasses. J Non-Cryst Solids 354:3767–3772

    Article  Google Scholar 

  29. Gerhardt R (1994) Impedance and dielectric-spectroscopy revisited- distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (51172006) and the Center of Laser Fusion, CAEP (050110.3-2011HF-C-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mankang Zhu.

About this article

Cite this article

Jia, Y., Wu, X., Zhu, M. et al. Relaxation mechanism analysis of synthetic fused quartz glass investigated by electrical impedance spectra. Chin. Sci. Bull. 59, 3271–3275 (2014). https://doi.org/10.1007/s11434-014-0312-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0312-8

Keywords

Navigation