Skip to main content
Log in

Direct coordination of metal ions to cucurbit[n]urils

  • Invited Review
  • Materials Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Cucurbit[n]urils (Q[n]) are promising ligands for the coordination of metal ions, metal complexes or clusters, and form various Q[n]-based complexes. Among the Q[n] complexes, those formed by direct coordination between Q[n]s and metal ions are particularly important. The direct coordination of metal ions to cucurbit[n]urils leads to the formation of Q[n]-based molecular capsules, tubular polymers and molecular bracelets, which could have nanoscale applications in drug delivery, molecular devices and new materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green J E, Choi J W, Boukai A, et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature, 2007, 445: 414–417

    Article  Google Scholar 

  2. Griffiths K E, Stoddart J F. Template-directed synthesis of donor/acceptor [2]catenanes and [2]rotaxanes. Pure Appl Chem, 2008, 80: 485–506

    Article  Google Scholar 

  3. Passaniti P, Ceroni P, Balzani V, et al. Amide-based molecular knots as platforms for fluorescent switches. Chem Eur J, 2006, 12: 5685–5690

    Article  Google Scholar 

  4. Philp D, Stoddart J F. Self-assembly in natural and unnatural systems. Angew Chem Int Ed, 1996, 35: 1154–1196

    Article  Google Scholar 

  5. Ghadiri M R, Granja J R, Milligan R A, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366: 324–327

    Article  Google Scholar 

  6. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  7. Sakai N, Mareda J, Matile S. Rigid-rod molecules in biomembrane models: From hydrogen-bonded chains to dynthetic multifunctional pores. Acc Chem Res, 2005, 38: 79–87

    Article  Google Scholar 

  8. Abrahams B F, Hoskins B F, Michail D M, et al. Assembly of porphyrin building blocks into network structures with large channels. Nature, 1994, 369: 727–729

    Article  Google Scholar 

  9. Subramanian S, Zaworotko M J. Porous solids by design: [Zn(4,4’-bpy)2(SiF6)]n·xDMF, a single framework octahedral coordination polymer with large square channels. Angew Chem Int Ed Engl, 1995, 34: 2127–2129

    Article  Google Scholar 

  10. Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework. Nature, 1995, 378: 703–706

    Article  Google Scholar 

  11. Yaghi O M, Davis C E, Li G, et al. Selective guest binding by tailored channels in a 3-D porous Zinc(II)-1,3,5-benzenetricarboxylate network. J Am Chem Soc, 1997, 119: 2861–2868

    Article  Google Scholar 

  12. Li H, Davis C E, Groy T L, et al. Coordinatively unsaturated metal centers in the extended porous framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-benzenedicarboxylate). J Am Chem Soc, 1998, 120: 2186–2187

    Article  Google Scholar 

  13. Harada A, Li J, Kamachi M. The molecular necklace: A rotaxane containing many threaded α-cyclodextrins. Nature, 1992, 356: 325–327

    Article  Google Scholar 

  14. Harada A, Li J, Kamachi M. Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 1993, 364: 516–518

    Article  Google Scholar 

  15. Sakai N, Brennan K C, Weiss L A, et al. Nucleophilic attack of hydroxide on a Mn(V) oxo Complex, a model of the O-O bond formation in the OEC of PS II. J Am Chem Soc, 1997, 119: 8726–8727

    Article  Google Scholar 

  16. Weiss L A, Sakai N, Ghebremariam B, et al. Functional nonpeptide models for transmembrane proton channels. J Am Chem Soc, 1997, 119: 12142–12149

    Article  Google Scholar 

  17. Sakai N, Majumdar N, Matile S. Self-assembled rigid-rod ionophores. J Am Chem Soc, 1999, 121: 4294–4295

    Article  Google Scholar 

  18. Horner M J, Holman K T, Ward M D. Architectural diversity and elastic networks in hydrogen-bonded host frameworks: From molecular jaws to cylinders. J Am Chem Soc, 2007, 129: 14640–14660

    Article  Google Scholar 

  19. Behrend R, Meyer E, Rusche F. Mittheilungen aus dem organischchemischen laboratorium der technischen hochschule zu hannover. Justus Liebigs Ann Chem, 1905, 339: 1–5

    Article  Google Scholar 

  20. Freeman W A, Mock W L, Shih N Y. Cucurbituril. J Am Chem Soc, 1981, 103: 7367–7368

    Article  Google Scholar 

  21. Kim J, Jung I S, Kim S Y, et al. New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J Am Chem Soc, 2000, 122: 540–541

    Article  Google Scholar 

  22. Day A I, Arnold A P. Method for synthesis cucurbiturils. WO 0068232, 2000. 8

    Google Scholar 

  23. Day A, Arnold A P, Blanch R J, et al. Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem, 2001, 66: 8094–8100

    Article  Google Scholar 

  24. Day A I, Blanch R J, Arnold A P, et al. The first endoannular metal halide-cucurbituril: cis-SnCl4(OH2)2-cucurbit[7]uril. Angew Chem Int Ed, 2002, 41: 275–279

    Article  Google Scholar 

  25. Wang W, Kaifer A E. Cucurbituril and cyclodextrin complexes of dendrimers. Adv Polym Sci, 2009, 222: 205–235

    Google Scholar 

  26. Yang H, Tan Y, Huang X, et al. Research progress of cucurbiturils. Prog Chem, 2009, 21: 164–173

    Google Scholar 

  27. Martini G, Ciani L. Electron spin resonance spectroscopy in drug delivery. Phys Chem Chem Phys, 2009, 11: 211–254

    Article  Google Scholar 

  28. Nau W M, Hennig A, Koner A L. Squeezing fluorescent dyes into nanoscale containersem dash The supramolecular approach to radiative decay engineering. Springer Ser Fluorece, 2008, 4: 185–211

    Article  Google Scholar 

  29. Ko Y H, Kim E, Hwang I, et al. Supramolecular assemblies built with host-stabilized charge-transfer interactions. Chem Commun, 2007: 1305–1315

  30. Huang F, Gibson H W. Polypseudorotaxanes and polyrotaxanes. Prog Polym Sci, 2005, 30: 982–1018

    Article  Google Scholar 

  31. Arunkumar E, Forbes C C, Mith B D. Improving the properties of organic dyes by molecular encapsulation. Eur J Org Chem, 2005: 4051–4059

  32. Mukhopadhyay P, Wu A, Isaacs L. Social self-sorting in aqueous solution. J Org Chem, 2004, 69: 6157–6164

    Article  Google Scholar 

  33. Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev, 2002, 31: 96–107

    Article  Google Scholar 

  34. Elemans J A A W, Rowan A E, Nolte R J M. Self-assembled architectures from glycoluril. Ind Eng Chem Res, 2000, 39: 3419–3428

    Article  Google Scholar 

  35. Gerasko O A, Sokolov M N, Fedin V P. Mono- and polynuclear aqua complexes and cucurbit[6]uril: Versatile building blocks for supramolecular chemistry. Pure Appl Chem, 2004, 76: 1633–1646

    Article  Google Scholar 

  36. Samsonenko D G, Gerasko O A, Virovets A V, et al. Synthesis and crystal structure of a supramolecular adduct of trinuclear molybdenum oxocluster with macrocyclic cavitand cucurbit[5]uril containing the included ionic associate Na+...Cl...Na+. Russ Chem Bull, 2005, 54: 1557–1562

    Article  Google Scholar 

  37. Liu J X, Long L S, Huang R B, et al. Molecular capsules based on cucurbit[5]uril encapsulating “naked” anion chlorine. Cryst Growth Des, 2006, 6: 2611

    Article  Google Scholar 

  38. Shao Y, Li Y Z, Shi J P, et al. [μ-Cucurbit[6]uril(2-)]bis [pentaaquacalcium(II)] bis[tetrachloridozincate(II)]heptahydrate. Acta Crys, 2007, E63: m1480

    Google Scholar 

  39. Kasuga N C, Umeda M, Kidokoro H, et al. Four novel solid-state supramolecular assemblies constructed from decavanadate salts and decamethylcucurbit[5]uril. Cryst Growth Des, 2009, 9: 1494–1498

    Article  Google Scholar 

  40. Heo J, Kim J, Whang D, et al. Columnar one-dimensional coordination polymer formed with a metal ion and a host-guest complex as building blocks: Potassium ion complexed cucurbiturils. Inorg Chim Acta, 2000, 297: 307–312

    Article  Google Scholar 

  41. Yan K, Huang Z X, Liu S M, et al. Synthesis and crystal structure of new supramolecular adducts of [PtCl6]2+ with cucurbit[7]uril: [(H3O)2(PtCl6)]3(C42H42N28O14)2·H2O. Wuhan Uni J Nat Sci, 2004, 9: 99–101

    Article  Google Scholar 

  42. Mitkina T V, Naumov D Y, Gerasko O A, et al. Inclusion of nickel(II) and copper(II) complexes with aliphatic polyamines in cucurbit[8]uril. Russ Chem Bull, 2004, 53: 2519–2524

    Article  Google Scholar 

  43. Liu J X, Dong C H, Long L S, et al. From 1D zigzag chain to 1D tubular structure, weak field ligand-dependent assembly of cucurbit[6] uril-based tubular coordination polymer. Dalton Trans, 2009: 7344–7346

  44. Tripolskaya A A, Mainicheva E A, Mitkina T V, et al. Sc(III), Eu(III), and Gd(III) complexes with macrocyclic cavitand cucurbit[6]uril: Synthesis and crystal structures. Russ J Coord Chem, 2005, 31: 768–774

    Article  Google Scholar 

  45. Mainicheva E A, Tripolskaya A A, Gerasko O A, et al. Synthesis and crystal structures of PrIII and NdIII complexes with the macrocyclic cavitand cucurbit[6]uril. Russ Chem Bull, 2006, 55: 1566–1573

    Article  Google Scholar 

  46. Tripol’skaya A A, Mainicheva E A, Geras’ko O A, et al. Synthesis and crystal structure of a supramolecular adduct of the aqua nitrato complex of gadolinium [Gd(NO3)(H2O)7]2+ with macrocyclic cavitand cucurbit[6]uril. J Struct Chem, 2007, 48: 547–551

    Article  Google Scholar 

  47. Gerasko O A, Mainicheva E A, Naumova M I, et al. Tetranuclear lanthanide aqua hydroxo complexes with macrocyclic ligand cucurbit[6]uril. Eur J Inorg Chem, 2008: 416–424

  48. Thuéry P. Uranyl ion complexes with cucurbit[n]urils (n = 6, 7, and 8): A new family of uranyl-organic frameworks. Cryst Growth Des, 2008, 8: 4132–4143

    Article  Google Scholar 

  49. Gerasko O A, Mainicheva E A, Naumova M I, et al. Sandwich-type tetranuclear lanthanide complexes with cucurbit[6]uril: From molecular compounds to coordination polymers. Inorg Chem, 2008, 47: 8869–8880

    Article  Google Scholar 

  50. Thuery P. Uranyl-lanthanide heterometallic complexes with cucurbit[6]uril and perrhenate ligands. Inorg Chem, 2009, 48: 825–827

    Article  Google Scholar 

  51. Thuery P. Lanthanide complexes with cucurbit[n]urils (n = 5, 6, 7) and perrhenate ligands: New examples of encapsulation of perrhenate anions. Inorg Chem, 2009, 48: 4497–4513

    Article  Google Scholar 

  52. Hernandez-Molina R, Sokolov M N, Sykes A G. Behavioral patterns of heterometallic cuboidal derivatives of [M3Q4(H2O)9]4+ (M) Mo, W; Q) S, Se). Acc Chem Res, 2001, 34: 223–230

    Article  Google Scholar 

  53. Hernandez-Molina R, Sokolov M, Esparza P, et al. Aqueous solution chemistry of [Mo3CuSe4]n + (n = 4, 5) and [W3CuQ4]5+ (Q = S, Se) clusters. Dalton Trans, 2004: 847–851

  54. Fedin V P. New lines of research in chemistry of chalcogenide complexes from culusters to supramolecular compounds. Russ J Coord Chem, 2004, 30: 151–158

    Article  Google Scholar 

  55. Hernandez-Molina R, Sokolov M N, Clausen M, et al. Synthesis and structure of Nickel-containing cuboidal clusters derived from [W3Se4(H2O)9]4+: Site-differentiated substitution at the Nickel site in the series [W3NiQ4(H2O)10]4+ (Q = S, Se). Inorg Chem, 2006, 45: 10567

    Article  Google Scholar 

  56. Chubarova E V, Sokolov M N, Samsonenko D G, et al. Supramolecular compounds of chloroaquacomplexes [Mo3Q4-(H2O)9−x Clx](4−x)+ (Q = S, Se; x = 2, 3, 5) with cucurbit[n]urils. J Struct Chem, 2006, 47: 939–945

    Article  Google Scholar 

  57. Hernandez-Molina R, Kalinina I, Sokolov M, et al. Synthesis, structure and reactivity of cuboidal-type cluster aqua complexes with W3PdS4 4+ core. Dalton Trans, 2007: 550–557

  58. Abramov P A, Sokolov M N, Virovets A V, et al. Synthesis and crystal structure of cucurbit[6]uril adduct of hydrogen-bonded cluster complex [Mo33-Se)(μ2-O)3(H2O)6Cl3]+. J Clust Sci, 2007, 18: 597–605

    Article  Google Scholar 

  59. Hernandez-Molina R, Kalinina I V, Sokolov M N, et al. Studies on Iron-containing chalcogenide clusters with core M3FeQ4 (M = Mo, W; Q=S, Se). Synth React Inorg M, 2007, 37: 765–770

    Google Scholar 

  60. Algarra A G, Sokolov M N, Gonzalez-Platas J, et al. Synthesis, reactivity, and kinetics of substitution in W3PdSe4 cuboidal clusters: A reexamination of the kinetics of substitution of the related W3S4 cluster with thiocyanate. Inorg Chem, 2009, 48: 3639–3649

    Article  Google Scholar 

  61. Gushchin A L, Ooi B, Harris P, et al. Synthesis and characterization of mixed chalcogen triangular complexes with new Mo33-S)(μ2-Se2)3 4+ and M33-S)(μ2-Se)3 4+ (M = Mo, W) cluster cores. Inorg Chem, 2009, 48: 3832–3839

    Article  Google Scholar 

  62. Yang H, Tan Y, Huang X, et al. Research progress of cucurbiturils. Prog Chem, 2009, 21: 164–173

    Google Scholar 

  63. Lagona J, Mukhopadhyay P, Chakrabarti S, et al. The cucurbit[n]uril family. Angew Chem Int Ed, 2005, 44: 4844–4870

    Article  Google Scholar 

  64. Gerasko O A, Samsonenko D G, Fedin V P. Supramolecular chemistry of cucurbiturils. Russ Chem Rev, 2002, 71: 741–760

    Article  Google Scholar 

  65. Han B H, Liu Y. Molecular recognition and assembly of cucurbiturils. Chin J Org Chem, 2003, 23: 139–149

    Google Scholar 

  66. Cram D J. Molecular container compounds. Nature, 1992, 356: 26–29

    Article  Google Scholar 

  67. Jeon Y M, Kim J, Whang D, et al. Molecular container assembly capable of controlling binding and release of its guest molecules: Reversible encapsulation of organic molecules in sodium ion complexed cucurbiturils. J Am Chem Soc, 1996, 118: 9790–9791

    Article  Google Scholar 

  68. Whang D, Heo J, Park J H, et al. A molecular bowl with metal ion as bottom: Reversible inclusion of organic molecules in cesium ion complexed cucurbiturils. Angew Chem Int Ed, 1998, 37: 78–80

    Article  Google Scholar 

  69. Beer P D, Gale P A. Anion recognition and sensing: The state of the art and future perspectives. Angew Chem Int Ed, 2001, 40: 486–516

    Article  Google Scholar 

  70. Bondy C R, Gale P A, Loeb S J. Metal-organic anion receptors: Arranging urea hydrogen-bond donors to encapsulate sulfate ions. J Am Chem Soc, 2004, 126: 5030–5031

    Article  Google Scholar 

  71. Dolomanov O V, Blake A J, Champness N R, et al. A novel synthetic strategy for hexanuclear supramolecular architectures. Chem Com mun, 2003: 682–683

  72. Zhou F G, Wu L H, Lu X J, et al. Molecular capsules based on methyl-substituted cucurbit[5]urils and strontium-capped. J Mol Struct, 2009, 927: 14–20

    Article  Google Scholar 

  73. Zhao Y J, Xue S F, Zhu Q J, et al. Synthesis of a symmetrical tetrasubstituted cucurbit[6]uril and its host-guest inclusion complex with 2,2′-bipyridine. Chinese Sci Bull, 2004, 49: 1111–1116

    Article  Google Scholar 

  74. Thuery P, Masci B. Uranyl ion complexation by cucurbiturils in the presence of perrhenic, phosphoric, or polycarboxylic acids: Novel mixed-ligand Uranyl-organic frameworks. Cryst Growth Des, 2010, 10: 716–725

    Article  Google Scholar 

  75. Heo J, Kim S Y, Whang D, et al. Shape-induced, hexagonal, open frameworks: Rubidium ion complexed cucurbiturils. Angew Chem Int Ed, 1999, 38: 641–643

    Article  Google Scholar 

  76. Zhang F, Yajima T, Li Y Z, et al. Iodine-assisted assembly of helical coordination polymers of cucurbituril and asymmetric copper(ii) complexes. Angew Chem Int Ed, 2005, 44: 3402–3407

    Article  Google Scholar 

  77. Samsonenko D G, Gerasko O A, Lipkowski J, et al. Synthesis and crystal structure of the nanosized supramolecular SmIII complex with macrocyclic cavitand cucurbituril {[Sm(H2O)4]2(C36H36N24O12)3}Br6· 44H2O. Russ Chem Bull, 2002, 51: 1915–1918

    Article  Google Scholar 

  78. Choudhury S D, Mohanty J, Pal H. Cooperative metal ion binding to a cucurbit[7]uril-thioflavin T complex: Demonstration of a stimulus-responsive fluorescent supramolecular capsule. J Am Chem Soc, 2010, 132: 1395–1401

    Article  Google Scholar 

  79. Ko Y H, Kim K, Kang J K, et al. Designed self-assembly of molecular necklaces using host-stabilized charge-transfer interactions. J Am Chem Soc, 2004, 126: 1932–1933

    Article  Google Scholar 

  80. Ni X L, Lin J X, Zheng Y Y, et al. Supramolecular bracelets and interlocking rings elaborated through the interrelationship of neighboring chemical environments of alkyl-substitution on cucurbit[5]uril. Cryst Growth Des, 2008, 8: 3446–3450

    Article  Google Scholar 

  81. Lee E, Heo J, Kim K. A three-dimensional polyrotaxane network. Angew Chem Int Ed, 2000, 39: 2699–2701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to QianJiang Zhu or Gang Wei.

About this article

Cite this article

Cong, H., Zhu, Q., Xue, S. et al. Direct coordination of metal ions to cucurbit[n]urils. Chin. Sci. Bull. 55, 3633–3640 (2010). https://doi.org/10.1007/s11434-010-4146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4146-8

Keywords

Navigation