Skip to main content
Log in

FDTD for plasmonics: Applications in enhanced Raman spectroscopy

  • Article
  • Special Topic Plasmonics
  • Published:
Chinese Science Bulletin

Abstract

The exact electromagnetic enhancement mechanism behind SERS, TERS, HERS and SHINERS is one of the issues focused on in the study of enhanced Raman spectroscopy. The three dimensional finite difference time domain method (3D-FDTD), which is widely used in nanoplasmonic simulations, not only provides us with a powerful numerical tool for theoretical studies of the ERS electromagnetic enhancement mechanism, but also serves as a useful tool for the design of ERS-active systems with higher sensitivities and spectral spatial resolution. In this paper, we first introduce the fundamental principles of FDTD algorithms, and then the size-dependent dielectric function of dispersive metallic material is discussed. A comparative study of FDTD and rigorous Mie evaluations of electromagnetic fields in the vicinity of a system of self-similar nanospheres shows an excellent correlation between the two computational methods, directly confirming the validity and accuracy of 3D-FDTD simulations in ERS calculations. Finally, we demonstrate, using a TERS calculation as an example, that the non-uniform mesh method can be more computationally efficient without loss of accuracy if it is applied correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver eletrode. Chem Phys Lett, 1974, 26: 163–166

    Article  Google Scholar 

  2. Jeanmaire D J, Van Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem, 1977, 84: 1–20

    Article  Google Scholar 

  3. Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc, 1977, 99: 5215–5217

    Article  Google Scholar 

  4. Stockle R M, Suh Y D, Deckert V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett, 2000, 318: 131–136

    Article  Google Scholar 

  5. Anderson M S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett, 2000, 76: 3130–3132

    Article  Google Scholar 

  6. Hayazawa N, Inouye Y, Sekkat Z, et al. Metallized tip amplification of near-field Raman scattering. Opt Commun, 2000, 183: 333–336

    Article  Google Scholar 

  7. Brolo A G, Arctander E, Gordon R, et al. Nanohole-enhanced Rman scattering. Nano Lett, 2004, 4: 2015–2018

    Article  Google Scholar 

  8. Bahns J T, Yan F, Qiu D, et al. Hole-enhanced Raman scattering. Appl Spectrosc, 2006, 60: 989–993

    Article  Google Scholar 

  9. Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2009, 464: 392–395

    Article  Google Scholar 

  10. Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys, 1985, 57: 783–826

    Article  Google Scholar 

  11. Tian Z Q, Ren B, Li J F, et al. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commu, 2007, 34: 3514–3534

    Article  Google Scholar 

  12. Wu D Y, Li J F, Ren B, et al. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem Soc Rev, 2008, 37: 1025–1041

    Article  Google Scholar 

  13. Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78: 1667–1670

    Article  Google Scholar 

  14. Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275: 1102–1106

    Article  Google Scholar 

  15. Xu H X, Bjerneld E J, Kall M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett, 1999, 83: 4357–4360

    Article  Google Scholar 

  16. Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B, 2002, 106: 9463–9483

    Article  Google Scholar 

  17. Pettinger B, Ren B, Picardi G, et al. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett, 2004, 92: 096101

    Article  Google Scholar 

  18. Ren B, Picardi G, Pettinger B, et al. Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew Chem Int Ed, 2005, 44: 139–142

    Article  Google Scholar 

  19. Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J Chem Phys, 1978, 69: 4l59–4161

    Google Scholar 

  20. Li Q H, Yang Z L, Ren B, et al. The relationship between extraordinary optical transmission and surface-enhanced Raman scattering in subwavelength metallic nanohole arrays. J Nanosci nanotechnol, 2010, doi: 10.1166/jnn.2010.2911

  21. Xu H X, Aizpurua J, Kall M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E, 2000, 62: 4318–4324

    Article  Google Scholar 

  22. Yang Z L, Aizpurua J, Xu H X. Electromagnetic field enhancement in TERS configurations. J Raman Spectrosc, 2009, 40: 1343–1348

    Article  Google Scholar 

  23. Mie G. Beitrage zur optik truber medien seziell kolloidaler matallosungen. Ann Phys, 1908, 25: 377–455

    Article  Google Scholar 

  24. Krug II J T, Sanchez E J, Xie X S. Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation. J Chem Phys, 2002, 116: 10895–10902

    Article  Google Scholar 

  25. Futamata M, Maruyama Y, Ishikawa M. Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J Phys Chem B, 2003, 107: 7607–7617

    Article  Google Scholar 

  26. Oubre C, Nordlander P. Finite-difference time-domain studies of the optical properties of nanoshell dimers. J Phys Chem B, 2005, 109: 10042–10051

    Article  Google Scholar 

  27. Tian Z Q, Yang Z L, Ren B, et al. Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. Faraday Discuss, 2006, 132: 159–170

    Article  Google Scholar 

  28. Chen Z H, Chu Q X. Stability analysis of the extended ADI-FDTD technique including lumped models. Sci China Ser F-Inform Sci, 2008, 51: 1607–1613

    Article  Google Scholar 

  29. Kottmann J P, Martin O J F, Smith D R, et al. Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem Phys Lett, 2001, 341: 1–78

    Article  Google Scholar 

  30. Micic M, Klymyshyn N, Suh Y D, et al. Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy. J Phys Chem B, 2003, 107: 1574–1584

    Article  Google Scholar 

  31. García de Abajo F J, Aizpurua J. Numerical simulation of electron energy loss near inhomogeneous dielectrics. Phys Rev B, 1997, 56: 15873–15884

    Article  Google Scholar 

  32. García de Abajo F J, Howie A. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics. Phys Rev Lett, 1998, 80: 5180–5183

    Article  Google Scholar 

  33. Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys, 2004, 120: 357–366

    Article  Google Scholar 

  34. Qin L D, Zou S L, Xue C, et al. Designing, fabricating, and imaging Raman hot spots. Proc Natl Acad Sci USA, 2006, 103: 13300–13303

    Article  Google Scholar 

  35. Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 2006, 311: 189–193

    Article  Google Scholar 

  36. Oubre C, Nordlander P. Optical properties of metallodielectric nanostructrues calculated using the finite difference time domain method. J Phys Chem B, 2004, 108: 17740–17747

    Article  Google Scholar 

  37. Maier S A, Kik P G, Atwater H. Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl Phys Lett, 2002, 81: 1714–1716

    Article  Google Scholar 

  38. Kik P G, Maier S A, Atwater H. Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources. Phys Rev B, 2004, 69: 045418

    Article  Google Scholar 

  39. Li Z, Gong Q H. The plasmonic coupling of metal nanoparticles and its implication for scanning near-field optical microscope characterization. Chinese Sci Bull, 2009, 54: 3843–3843

    Article  Google Scholar 

  40. Yee K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic mediam. IEEE Trans Antennas Propag, 1966, 14: 302–307

    Article  Google Scholar 

  41. Kunz K S, Luebbers R J. The Finite Difference Time Domain Method for Electromagnetics. Boca Raton: CRC Press LLC, 1993

    Google Scholar 

  42. Luebbers R J, Hunsberge F, Kunz K S. A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma. IEEE Trans Antennas Propag, 1991, 39: 29–34

    Article  Google Scholar 

  43. Bian R X, Dunn R C, Xie X S, et al. Single molecule emission characteristics in near-field microscopy. Phys Rev Lett, 1995, 75: 4772–4775

    Article  Google Scholar 

  44. Tian Z Q, Yang Z L, Ren B, et al. Surface-enhanced Raman scattering. Topics Appl Phys, 2006, 103: 125–146

    Article  Google Scholar 

  45. Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Berlin: Springer, 1995

    Google Scholar 

  46. Coronado E A, Schatz G C. Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. J Chem Phys, 2003, 119: 3926–3934

    Article  Google Scholar 

  47. Xu H X. Comment on “Theoretical study of single molecule fluorescence in a metallic nanocavity”. Appl Phys Lett, 2005, 87: 066101

    Article  Google Scholar 

  48. Li Z P, Yang Z L, Xu H X. Comment on “Self-similar chain of metal nanospheres as an efficient nanolens”. Phys Rev Lett, 2006, 97: 079701

    Article  Google Scholar 

  49. Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370–4379

    Article  Google Scholar 

  50. Li K, Stockman M I, Bergman D J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett, 2003, 91: 227402

    Article  Google Scholar 

  51. XFDTD reference manual. Version 6.3. Remcom Inc, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiLin Yang.

About this article

Cite this article

Yang, Z., Li, Q., Ruan, F. et al. FDTD for plasmonics: Applications in enhanced Raman spectroscopy. Chin. Sci. Bull. 55, 2635–2642 (2010). https://doi.org/10.1007/s11434-010-4044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4044-0

Keywords

Navigation