Skip to main content
Log in

Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces

  • Article
  • Physical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

We used molecular dynamics simulation to demonstrate the microscopic wetting behavior of two solid model surfaces for the first time. Hydrophilic and hydrophobic features were modeled in a dense CO2 fluid environment under various densities. The water droplet loses contact with the surface under the influence of higher density CO2 fluids on the hydrophobic surface. For the hydrophilic surface, no separation between the water droplet and the surface was observed. However, the contact angle of the water droplet on the hydrophilic surface was found to increase with the fluid density. The effect of dense CO2 fluid on the surface wettability can be interpreted in terms of enhanced interactions from the surrounding CO2 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors. Semiconductor Industry Association, 2005

  2. DeSimone J M. Practical approaches to green solvents. Science, 2002, 297: 799–803

    Article  Google Scholar 

  3. Jones C A, Yang D, Irene E A, et al. HF etchant solutions in supercritical carbon dioxide for “Dry” etch processing of microelectronic devices. Chem Mater, 2003, 15: 2867–2869

    Article  Google Scholar 

  4. King J W, Williams L L. Utilization of critical fluids in processing semiconductors and their related materials. Curr Opin Solid Mater Sci, 2003, 7: 413–424

    Article  Google Scholar 

  5. Jones C A, Zweber A, DeYoung J P, et al. Applications of “dry” processing in the microelectronics industry using carbon dioxide. Critical Rev Solid State Mater Sci, 2004, 29: 97–109

    Article  Google Scholar 

  6. Qin Y, Yang X, Zhu Y. Molecular dynamics simulation of interaction between supercritical CO2 fluid and modified silica surfaces. J Phys Chem C, 2008, 112: 12815–12824

    Article  Google Scholar 

  7. Keagy J A, Zhang X, Busch E, et al. Cleaning of patterned porous low-k dielectrics with water, carbon dioxide and ambidextrous surfactants. J Supercrit Fluids, 2006, 39: 277–285

    Article  Google Scholar 

  8. Zhang X, Pham J Q, Martinez H J, et al. Water-in-carbon dioxide microemulsion for removing postech residues from patterned porous low-k dialectrices. J Vacuum Sci Technol, 2003, B21: 2590–2598

    Article  Google Scholar 

  9. Keagy J A, Li Y, Green P F, et al. CO2 promotes penetration and removal of aqueous hydrocarbon surfactant cleaning solutions and silylation in low-k dielectrics with 3 nm pores. J Supercrit Fluids, 2007, 42: 398–409

    Article  Google Scholar 

  10. Dickson J L, Guprta G, Horozov T S, et al. Wetting phenomena at the CO2/Water/Glass interface. Langmuir, 2006, 22: 2161–2170

    Article  Google Scholar 

  11. Li Y, Pham J Q, Johnston K P, et al. Contact angle of water on polystyrene thin films: Effects of CO2 environment and film thickness. Langmuir, 2007, 23: 9785–9793

    Article  Google Scholar 

  12. Lopes P E M, Murashov V, Tazi, M, et al. Development of an empirical force field for silica. Application to the quartz-water interface. J Phys Chem B, 2006, 110: 2782–2792

    Article  Google Scholar 

  13. Zhuravlev L T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surface, A, 2000, 173: 1–38

    Article  Google Scholar 

  14. Yun J H, Duren T, Keil F J, et al. Adsorption of methane, ethane, and their binary mixtures on MCM-41: Experimental evaluation of methods for the prediction of adsorption equilibrium. Langmuir, 2002, 18: 2693–2701

    Article  Google Scholar 

  15. Furukawa S, Nishiumi T, Aoyama N, et al. A molecular simulation study on adsorption of Acetone/Water in mesoporous silicas modified by pore surface silylation. J Chem Eng Japan, 2005, 38: 999–1007

    Article  Google Scholar 

  16. Berendsen H J C, Grigera J R, Straatsma T P. The missing term in effective pair potentialst. J Phys Chem, 1987, 91: 6269–6271

    Article  Google Scholar 

  17. Higashi H, Iwai Y, Uchida H, et al. Diffusion coefficients of aromatic compounds in supercritical carbon dioxide using molecular dynamic simulation. J Supercrit Fluids, 1998, 13: 93–97

    Article  Google Scholar 

  18. Senapati S, Keiper J S, DeSimone J M, et al. Structure of phosphate fluorosurfactant based reverse micelles in supercritical carbon dioxide. Langmuir, 2002, 18: 7371–7376

    Article  Google Scholar 

  19. Lu L, Berkowitz M L. Molecular dynamics simulation of a reverse micelle self assembly in supercritical CO2. J Am Chem Soc, 2004, 126: 10254–10255

    Article  Google Scholar 

  20. Fan C F, Cagin T. Wetting of crystalline polymer surfaces: A molecular dynamics simulation. J Chem Phys, 1995, 103: 9053–9061

    Article  Google Scholar 

  21. Chai J, Liu S, Yang X. Molecular dynamics simulations of wetting on modified amorphous silica surfaces. Appl Surf Sci, 2009, 255: 9078

    Article  Google Scholar 

  22. Tripp C P, Combes J R. Chemical modification of metal oxide surfaces in supercritical CO2: The interaction of supercritical CO2 with the adsorbed water layer and the surface hydroxyl groups of a silica surfaces. Langmuir, 1998, 14: 7348

    Article  Google Scholar 

  23. Bakaev V A, Steele W A, Pantano, C G. On the computer simulation of silicate glass surfaces. J Chem Phys, 2001, 114: 9599–9607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoNing Yang.

About this article

Cite this article

Liu, S., Yang, X. & Qin, Y. Molecular dynamics simulation of wetting behavior at CO2/water/solid interfaces. Chin. Sci. Bull. 55, 2252–2257 (2010). https://doi.org/10.1007/s11434-010-3287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3287-0

Keywords

Navigation