Skip to main content
Log in

Proteorhodopsin—A new path for biological utilization of light energy in the sea

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

The breakthrough of environmental genomics of marine microbes has revealed the existence of eubacterial rhodopsin in the sea, named proteorhodopsin (PR), which can take light to produce bio-energy for cell metabolism. Gene and protein sequence analysis and laser flash-induced photolysis experiments have validated the function of PR as light-driven proton-pump. During the pumping process, light energy is transformed into chemical gradient potential across plasma inner-membrane, the potential energy is then used to synthesize ATP. The finding of PR actually brings to light a novel pathway of sunlight utilization existing in heterotrophic eubacteria in contrast to the well-known chlorophyll-dependent photosynthesis in the sea. Since the group of PR-bearing bacteria is one of the numerically richest microorganisms on the Earth, accounting for 13% of the total in sea surface water, and with averaged cellular PR molecules of 2.5×104, PR-bearing bacteria are a key component not to be ignored in energy metabolism and carbon cycling in the sea. Based on the understanding of current literature and our own investigation on PR in the China seas which indicated a ubiquitous presence and high diversity of PR in all the marine environments, we propose a conceptual model of energy flow and carbon cycling driven by both pigment-dependent and-independent biological utilization of light in the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fenchel T. Marine bugs and carbon flux. Science, 2001, 292: 2444–2445

    Article  Google Scholar 

  2. Béjà O, Koonin E V, Aravind L, et al. Bacterial rhodopsin: evidence for a new type of phototrophy. Science, 2000, 289: 1902–1906

    Google Scholar 

  3. Friedrich T, Geibel S, Kalmbach R, et al. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol, 2002, 321: 821–838

    Article  Google Scholar 

  4. Sabehi G, Loy A, Jung K-H, et al. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Boil, 2005, 3(8): e273

    Google Scholar 

  5. Spudich J L, Yang C-S, Jung K-H, et al. Retinylidene proteins: Structures and functions from archaea to humans. Annu Rev Cell Dev Biol, 2000, 16: 365–392

    Article  Google Scholar 

  6. Haupts U, Tittor J, Oesterhelt D. Closing in on bacteriorhodopsin: Progress in understanding the molecule. Annu Rev Biophys Biomol Struct, 1999, 28: 367–399

    Article  Google Scholar 

  7. Bogomolni R A, Stoeckenius W, Szundi I, et al. Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci USA, 1994, 91: 10188–10192

    Google Scholar 

  8. Bieszke J A, Braun E L, Bean L E, et al. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA, 1999, 96: 8034–8039

    Article  Google Scholar 

  9. Sineshchekov O A, Jung K H, Spudich J L. Two rhodopsins mediate phototaxis to low-and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 2002, 99: 8689–8694

    Google Scholar 

  10. Jung K H, Trivedi V D, Spudich J L. Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol, 2003, 47: 1513–1522

    Article  Google Scholar 

  11. Spudich J L, Jung K-H. Microbial rhodopsins: Phylogenetic and functional diversity. In: Briggs W R, Spudich J L, eds. Handbook of Photosensory Receptors. Weinheim: Wiley-VCH, 2005, 1–23

    Google Scholar 

  12. Waschuk S A, Bezerra A G Jr, Shi L, et al. Leptosphaeria rhodopsin: Bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci USA, 2005, 102: 6879–6883

    Article  Google Scholar 

  13. Béjà O, Koonin E V, Aravind L, et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol, 2000, 2: 516–529

    Google Scholar 

  14. Váró G, Brown L S, Lakatos M, et al. Characterization of the photochemical reaction cycle of proteorhodopsin. Biophysi, 2003, 84: 1202–1207

    Google Scholar 

  15. Béjà O, Aravind L, Eugene V, et al. Proteorhodopsin phototrophy in the ocean. Nature, 2001, 411: 786–789

    Article  Google Scholar 

  16. Giovannoni S J, Bibbs L, Cho J C, et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature, 2005, 438: 82–85

    Article  Google Scholar 

  17. Sabehi G, Massana R, Bielawski J P, et al. Novel proteorhodopsin variants from the Mediterranean and Red Seas. Environ Microbiol, 2003, 5: 812–849

    Article  Google Scholar 

  18. Bielawski J P, Dunn K A, Sabehi G. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proc Natl Acad Sci USA, 2004, 101: 14824–14829

    Article  Google Scholar 

  19. Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 306: 66–74

    Google Scholar 

  20. Kyndt J, Meyer T E, Cusanovich M A. Photoactive yellow protein bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteria. Photochem Photobiol Sci, 2004, 3: 519–530

    Article  Google Scholar 

  21. Torre J R, Christianson L M, Béjà O, et al. Proteorhodopsin genes are distributed in divergent marine bacterial taxa. Proc Natl Acad Sci USA, 2003, 100: 12830–12835

    Google Scholar 

  22. Sabehi G, Béjà O, Suzuki M T, et al. Different SAR86 subgroups harbour divergent proteorhodopsins. Environ Microbiol, 2004, 6: 903–910

    Article  Google Scholar 

  23. Rappé M S, Connon S A, Vergin K L, et al. Cultivation of the ubiquitous SAR11 marine bacterioplanton clade. Nature, 2002, 418: 630–633

    Article  Google Scholar 

  24. Giovannoni S J, Tripp H J, Givan S, et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science, 2005, 309(5738): 1242–1245

    Article  Google Scholar 

  25. Man D, Wang W W, Sabehi G, et al. Diversification and spectral tuning in marine proteorhodopsins. EMBO J, 2003, 22: 1725–1731

    Article  Google Scholar 

  26. Wang W W, Sineshchekov O A, Spudich E N, et al. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J Biol Chem, 2003, 278: 33985–33991

    Google Scholar 

  27. Man-Aharonovich D, Sabehi G, Sineshchekov O A, et al. Characterization of RS29, a blue-green proteorhodopsin variant from the Red sea. Photochem Photobiol Sci, 2004, 3: 459–462

    Article  Google Scholar 

  28. Hoff W D, Jung K H, Spudich J L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct, 1997, 26: 223–258

    Article  Google Scholar 

  29. Haupts U, Haupts C, Oesterhelt D. The photoreceptor sensory rhodopsin I as a two-photon-driven proton pump. Proc Natl Acad Sci USA, 1995, 92: 3834–3838

    Google Scholar 

  30. Michel H, Oesterhelt D. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: Effect of N,N9-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influenceof the potassium gradient. Biochemistry, 1980, 19: 4607–4614

    Google Scholar 

  31. Tsutomu M, Koichi K. Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science, 1992, 255: 342–344

    Google Scholar 

  32. Kennedy D. Breakthrough of the year. Science, 2004, 306: 2001

    Google Scholar 

  33. Jiao N Z, Sieracki M E, Zhang Y, et al. Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems. Chin Sci Bull, 48(11): 1064–1068

  34. Jiao N Z, Zhang Y, Chen Y. Time series observation based Infrared epifluorescence microscopic approach for accurate enumeration of bacteriochlorophyll containing microbes in Marine Environments. J Microbiol Methods, 2006, 65(3): 428–439

    Google Scholar 

  35. Hampp N, Oesterhelt D. Bacteriorhodopsin and its potential in technical applications. In: Niemeyer C, Mirkin C, eds. Nano-biotechnology. Weinheim: Wiley-VCH-Verlag, 2004, 146–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Nianzhi.

About this article

Cite this article

Jiao, N., Feng, F. & Wei, B. Proteorhodopsin—A new path for biological utilization of light energy in the sea. CHINESE SCI BULL 51, 889–896 (2006). https://doi.org/10.1007/s11434-008-0889-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0889-x

Keywords

Navigation