Skip to main content
Log in

Modification of TiO2 nanotubes arrays by CdS and their photoelectrocatalytic hydrogen generation properties

  • Brief Communication
  • Environmental Science
  • Published:
Chinese Science Bulletin

Abstract

In order to realize hydrogen generation under visible light, novel CdS/TiO2 nanotubes arrays are developed by electrochemical anodization of Ti in 0.15 mol/L NH4F + 0.08 mol/L H2C2O4 electrolyte. The diameter of the nanotube is 80–100 nm and the length is approximately 550 nm. The CdS nano-particles are deposited on the TiO2 nanotubes arrays by chemical bath deposition (CBD) in the ammonia-thiourea system. A 300 W Xe lamp is used as the light source, CdS/TiO2 nanotube arrays are used as the photoanode with the application of 1.0 V bath voltage, and 0.1 mol/L Na2S + 0.04 mol/L Na2SO3 solution is used as the electrolyte, then the rate of photoelectrocatalytic hydrogen generation is 245.4 μL/(h·cm2). This opens new perspectives for photoelectrocatalytic hydrogen generation by using CdS/TiO2 nanotubes arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38

    Article  PubMed  CAS  Google Scholar 

  2. Zhang X W, Zhou M H, Lei L C. Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon, 2005, 43(8): 1700–1708

    Article  CAS  Google Scholar 

  3. Zhang X W, Zhou M H, Lei L C. Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Appl Catal A-Gen, 2005, 282(1–2): 285–293

    Article  CAS  Google Scholar 

  4. Khan S U M, Al-Shahry M, Ingler W B A. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297: 2243–2245

    Article  PubMed  CAS  Google Scholar 

  5. Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414(6864): 625–627

    Article  PubMed  CAS  Google Scholar 

  6. Chang H, Kong K, Choi Y S, et al. Electronic structures of InTaO4, a promising photocatalyst. Chem Phys Lett, 2004, 398(4–6): 449–452

    Article  CAS  Google Scholar 

  7. Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem, 1994, 84: 13669–13679

    Article  Google Scholar 

  8. Zhang X W, Zhou M H, Lei L C. Preparation of an Ag-TiO2 photocatalyst coated on activated carbon by MOCVD. Mater Chem Phys, 2005, 91(1): 73–79

    Article  CAS  Google Scholar 

  9. Dhanalakshmi K B, Latha S, Anandan S, et al. Dye sensitized hydrogen evolution from water. Int J Hydrogen Energ, 2001, 26(7): 669–674

    Article  CAS  Google Scholar 

  10. Wu L, Yu J C, Fu X Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation. J Mol Catal A-Chem, 2006, 244(1–2): 25–32

    Article  CAS  Google Scholar 

  11. Flood R, Enright B, Allen M, et al. Determination of band edge energies for transparent nanocrystalline TiO2-CdS sandwich electrodes prepared by electrodeposition. Sol Energ Mat Sol C, 1995, 39(1): 83–98

    Article  CAS  Google Scholar 

  12. Jang J S, Li W, Oh S H, et al. Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chem Phys Lett, 2006, 425(4–6): 278–282

    Article  CAS  Google Scholar 

  13. Yin Y, Jin Z, Hou F. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays. Nanotechnology, 2007, 18(49): 5608–5613

    Article  Google Scholar 

  14. Yang S G, Liu Y Z, Sun C. Preparation of anatase TiO2/Ti nanotube-like electrodes and their high photoelectrocatalytic activity for the degradation of PCP in aqueous solution. Appl Catal A-Gen, 2006, 301(2): 284–291

    Article  CAS  Google Scholar 

  15. Quan X, Yang S G, Ruan X L, et al. Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol, 2005, 39(10): 3770–3775

    Article  PubMed  CAS  Google Scholar 

  16. Cai Y P, Cai W, Li W, et al. Preparation and properties of CdS film. Chin J Semicon (in Chinese), 2003, 24(8): 837–840

    Google Scholar 

  17. Martinez M A, Guillen C, Herrero J. Morphological and structural studies of CBD-CdS thin films by microscopy and diffraction techniques. Appl Surf Sci, 1998, 136(1–2): 8–16

    Article  CAS  Google Scholar 

  18. Hagfeldtt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95(1): 49–68

    Article  Google Scholar 

  19. Zhuang H F, Lin C J, Lai Y K, et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ Sci Technol, 2007, 41(13): 4735–4740

    Article  PubMed  CAS  Google Scholar 

  20. Paulose M, Mor G K, Varghese O K, et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photoch Photobio A, 2006, 178(1): 8–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LeCheng Lei.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 90610005, 20336030, 20576120 and U0633003), the National “863” Program (Grant No. 2007AA06Z339), and Science and Technology Bureau of Zhejiang Province (Grant No. 2007C13061)

About this article

Cite this article

Zhang, J., Zhang, X. & Lei, L. Modification of TiO2 nanotubes arrays by CdS and their photoelectrocatalytic hydrogen generation properties. Chin. Sci. Bull. 53, 1929–1932 (2008). https://doi.org/10.1007/s11434-008-0258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0258-9

Keywords

Navigation