Skip to main content
Log in

Effects of cavity-dispersion noncoaxiality on the generation of ultrabroadband femtosecond pulses

  • Articles
  • Optics
  • Published:
Chinese Science Bulletin

Abstract

The effects of cavity-dispersion noncoaxiality (CDN) on the generation of ultrabroadband femtosecond pulses in KLM Ti:sapphire laser were investigated theoretically and experimentally. It was predicted that when the laser sub-cavity works near the coaxial operation point, the limitation of CDN on the bandwidth broadening is minimum, which is favorable for ultrabroadband pulse generation. On the basis of this prediction, femtosecond pulses with bandwidth of 650 to 1000 nm were directly generated from a home built KLM Ti:sapphire laser. To our knowledge, they are the broadest bandwidth pulses produced from KLM Ti:sapphire laser with similar oscillator configuration and gain crystal length of 3 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spence D E, Evans J M, Sleat W E. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt Lett, 1991, 16(1): 42–44

    Google Scholar 

  2. Ell R, Morgner U, Kärtner F X, et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt Lett, 2001, 26(6): 373–375

    Article  Google Scholar 

  3. Schibli T R, Kuzucu O, Kim J W, et al. Toward Single-Cycle Laser Systems. IEEE J Sel Top Quantum Electron, 2003, 9(4): 990–1001

    Article  Google Scholar 

  4. Cundiff S T, Knox W H, Ippen E P, et al. Frequency-dependent mode size in broadband Kerr-lens mode locking. Opt Lett, 1996, 21(9): 662–664

    Google Scholar 

  5. Chen Y C, Zheng X Y, Lai T S, et al. Resonators for self-mode-locking Ti:sapphire lasers without apertures. Opt Lett, 1996, 21(18): 1469–1471

    Google Scholar 

  6. Xu L, Spielmann C, Krausz F, et al. Ultrabroadband ring oscillator for sub-10-fs pulse generation. Opt Lett, 1996, 21(16): 1259–1261

    Google Scholar 

  7. Gallmann L, Steinmeyer G, Sutter D H, et al. Spatially resolved amplitude and phase characterization of femtosecond optical pulses. Opt Lett, 2001, 26(2): 96–98

    Article  Google Scholar 

  8. Dorrer C, Kosik E M, Walmsley I A. Spatio-temporal characterization of the electric field of ultrashort optical pulses using two-dimensional shearing Interferometry. Appl Phys B, 2002, 74: S209–S217

    Article  Google Scholar 

  9. Ma J, Zhang R B, Zhao H J et al. Spatial chirp and angular dispersion of the nonlinear crystal for a femtosecond optical parametric oscillation. Acta Phys Sin (in Chinese), 2004, 53(7): 2184–2190

    Google Scholar 

  10. Salin F, Squier J, Piche M. Mode locking of Ti:Al2O3 lasers and self-focusing: A Gaussian approximation. Opt Lett, 1991, 16(21): 1674–1676

    Google Scholar 

  11. Magni V, Cerullo G and Silvestri S D. ABCD matrix analysis of propagation of Gaussian beams through kerr media. Opt Commun, 1993, 96: 348–355

    Article  Google Scholar 

  12. Herrmann J. Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain. J Opt Soc Am B, 1994, 11(3): 498–512

    Article  Google Scholar 

  13. Mehendale M, Nelson T R, Omenetto F G, et al. Thermal effects in laser-pumped Kerr-lens mode-locked Ti:sapphire lasers. Opt Commun, 1997, 136: 150–159

    Article  Google Scholar 

  14. Haus H A. Theory of mode locking with a fast saturable absorber. J Appl Phys, 1975, 46: 3049–3058

    Article  Google Scholar 

  15. Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys Rev Lett, 1980, 45(16): 1095–1098

    Article  Google Scholar 

  16. Unterhuber A, Považay B, Hermann B, et al. Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography. Opt Lett, 2003, 28(11): 905–907

    Article  Google Scholar 

  17. Lytle A L, Gershgoren E, Tobey R I, et al. Use of a simple cavity geometry for low and high repetition rate mode-locked Ti:sapphire lasers. Opt Express, 2004, 12: 1409–1416

    Article  Google Scholar 

  18. Kirchner M S, Fortier T M, Bartels A, et al. A low-threshold self-referenced Ti:sapphire optical frequency comb. Opt Express, 2006, 14: 9531–9536

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshu Lai.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60678009, 60490295, 10674184 and 10274107) and the Doctoral Specialized Foundation of China (Grant No. 20050558030)

About this article

Cite this article

Jiao, Z., Lei, L., Huang, Z. et al. Effects of cavity-dispersion noncoaxiality on the generation of ultrabroadband femtosecond pulses. Chin. Sci. Bull. 53, 659–663 (2008). https://doi.org/10.1007/s11434-008-0059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0059-1

Keywords

Navigation