Skip to main content
Log in

Subrecoil cooling of 6Li atoms by 2S→3P ultraviolet narrow transition

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Laser cooling of atoms and molecules is crucial to exhibiting excellent features in the field of low-temperature physics. Cooling 6Li atoms to very low temperatures is difficult due to their partially resolved D2 line of excited states. Here we report an observation of cooling 6Li atom samples to 16 µK with an ultraviolet (UV) laser in a magneto-optical trap, which breaks the Doppler cooling limit and approaches half of the photon-recoil limit. The essential mechanism of cooling results is that the natural linewidth is comparable to the recoil frequency in such a 2S→3P ultraviolet narrow transition. Laser frequency stability is important in the cooling process, and thus, the UV laser was locked to an optical frequency comb referenced to an ultrastable optical cavity. The cooling was numerically simulated to explain the cooling forces. The results can provide an ideal platform in the field of precision measurements and ultracold Fermi gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Phillips, H. Metcalf, and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982).

    Article  ADS  Google Scholar 

  2. H. J. Metcalf, and P. Straten, Laser Cooling and Trapping (Springer, New York, 1999).

    Book  Google Scholar 

  3. A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, and M. Müller, Phys. Rev. X 7, 041061 (2017), arXiv: 1705.02771.

    Google Scholar 

  4. S. Tewari, S. Das Sarma, C. Nayak, C. Zhang, and P. Zoller, Phys. Rev. Lett. 98, 010506 (2007), arXiv: quant-ph/0606101.

    Article  ADS  Google Scholar 

  5. J. I. Cirac, P. Maraner, and J. K. Pachos, Phys. Rev. Lett. 105, 190403 (2010), arXiv: 1006.2975.

    Article  ADS  Google Scholar 

  6. E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. A 88, 023617 (2013), arXiv: 1303.5040.

    Article  ADS  Google Scholar 

  7. M. A. Bouchiat, Phys. Rev. Lett. 98, 043003 (2007), arXiv: physics/0611036.

    Article  ADS  Google Scholar 

  8. A. L. Oliveira, M. W. Mancini, V. S. Bagnato, and L. G. Marcassa, Phys. Rev. A 65, 031401 (2002).

    Article  ADS  Google Scholar 

  9. J. A. Muniz, D. J. Young, J. R. K. Cline, and J. K. Thompson, Phys. Rev. Res. 3, 023152 (2021).

    Article  Google Scholar 

  10. W. Wang, H. Zhu, L. Wang, W. K. Bai, X. Z. Chen, and W. M. Liu, Sci. Sin.-Phys. Mech. Astron. 51, 074207 (2021).

    Article  Google Scholar 

  11. M. McDonald, B. H. McGuyer, G. Z. Iwata, and T. Zelevinsky, Phys. Rev. Lett. 114, 023001 (2015), arXiv: 1409.5852.

    Article  ADS  Google Scholar 

  12. Y. Zhang, C. Shan, and K. Mølmer, Phys. Rev. Lett. 128, 013604 (2022), arXiv: 2105.12673.

    Article  ADS  Google Scholar 

  13. Y. Rui, Y. L. Wu, R. Li, and H. B. Wu, Sci. Sin.-Phys. Mech. Astron. 51, 074209 (2021).

    Article  Google Scholar 

  14. R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Science 360, 191 (2018), arXiv: 1812.04130.

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, Nature 588, 61 (2020).

    Article  ADS  Google Scholar 

  16. K. Cassella, E. Copenhaver, B. Estey, Y. Feng, C. Lai, and H. Müller, Phys. Rev. Lett. 118, 233201 (2017), arXiv: 1610.07588.

    Article  ADS  Google Scholar 

  17. L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, Phys. Rev. Lett. 115, 013004 (2015), arXiv: 1503.00401.

    Article  ADS  Google Scholar 

  18. P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A. Kasevich, Phys. Rev. Lett. 125, 191101 (2020), arXiv: 2005.11624.

    Article  ADS  Google Scholar 

  19. G. M. Tino, Quantum Sci. Technol. 6, 024014 (2021), arXiv: 2009.01484.

    Article  ADS  Google Scholar 

  20. Y. Castin, H. Wallis, and J. Dalibard, J. Opt. Soc. Am. B 6, 2046 (1989).

    Article  ADS  Google Scholar 

  21. Y. S. Chin, M. Steiner, and C. Kurtsiefer, Phys. Rev. A 96, 033406 (2017), arXiv: 1707.05965.

    Article  ADS  Google Scholar 

  22. Z. H. Ji, J. P. Yuan, Y. T. Zhao, X. F. Chang, L. T. Xiao, and S. T. Jia, Chin. Phys. B 23, 113702 (2014), arXiv: 1304.7066.

    Article  ADS  Google Scholar 

  23. Y. L. Wu, R. Li, Y. Rui, H. F. Jiang, and H. B. Wu, Acta Phys. Sin. 67, 163201 (2018).

    Article  Google Scholar 

  24. P. Hamilton, G. Kim, T. Joshi, B. Mukherjee, D. Tiarks, and H. Müller, Phys. Rev. A 89, 023409 (2014), arXiv: 1308.1935.

    Article  ADS  Google Scholar 

  25. H. Z. Chen, X. C. Yao, Y. P. Wu, X. P. Liu, X. Q. Wang, Y. A. Chen, and J. W. Pan, Appl. Phys. B 122, 281 (2016), arXiv: 1610.07950.

    Article  ADS  Google Scholar 

  26. J. Sebastian, C. Gross, K. Li, H. C. J. Gan, W. Li, and K. Dieckmann, Phys. Rev. A 90, 033417 (2014), arXiv: 1409.2350.

    Article  ADS  Google Scholar 

  27. T. H. Loftus, T. Ido, A. D. Ludlow, M. M. Boyd, and J. Ye, Phys. Rev. Lett. 93, 073003 (2004), arXiv: physics/0401055.

    Article  ADS  Google Scholar 

  28. T. H. Loftus, T. Ido, M. M. Boyd, A. D. Ludlow, and J. Ye, Phys. Rev. A 70, 063413 (2004), arXiv: physics/0407021.

    Article  ADS  Google Scholar 

  29. Y. Miyazawa, R. Inoue, H. Matsui, K. Takanashi, and M. Kozuma, Phys. Rev. A 103, 053122 (2021), arXiv: 2102.11700.

    Article  ADS  Google Scholar 

  30. T. Binnewies, G. Wilpers, U. Sterr, F. Riehle, J. Helmcke, T. E. Mehlstäubler, E. M. Rasel, and W. Ertmer, Phys. Rev. Lett. 87, 123002 (2001), arXiv: physics/0105069.

    Article  ADS  Google Scholar 

  31. Y. Castin, H. Wallis, and J. Dalibard, J. Opt. Soc. Am. B 6, 2046 (1989).

    Article  ADS  Google Scholar 

  32. S. J. Deng, Z. Y. Shi, P. P. Diao, Q. L. Yu, H. Zhai, R. Qi, and H. B. Wu, Science 353, 371 (2016), arXiv: 1512.02044.

    Article  ADS  Google Scholar 

  33. R. Li, Y. L. Wu, Y. Rui, B. Li, Y. Y. Jiang, L. S. Ma, and H. B. Wu, Phys. Rev. Lett. 124, 063002 (2020).

    Article  ADS  Google Scholar 

  34. R. Li, Y. L. Wu, Y. Rui, and H. B. Wu, Phys. Rev. A 103, 032823 (2021).

    Article  ADS  Google Scholar 

  35. T. Fortier, and E. Baumann, Commun. Phys. 2, 153 (2019), arXiv: 1909.05384.

    Article  Google Scholar 

  36. R. J. Jones, I. Thomann, and J. Ye, Phys. Rev. A 69, 051803 (2004).

    Article  ADS  Google Scholar 

  37. H. Q. Chen, Y. Y. Jiang, Z. Y. Bi, and L. S. Ma, Sci. China Tech. Sci. 56, 1589 (2013).

    Article  Google Scholar 

  38. S. Krämer, D. Plankensteiner, L. Ostermann, and H. Ritsch, Comput. Phys. Commun. 227, 109 (2018), arXiv: 1707.01060.

    Article  ADS  Google Scholar 

  39. J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys. Commun. 184, 1234 (2013), arXiv: 1211.6518.

    Article  ADS  Google Scholar 

  40. T. E. Oliphant, Comput. Sci. Eng. 9, 10 (2007).

    Article  Google Scholar 

  41. S. Eckel, D. S. Barker, E. B. Norrgard, and J. Scherschligt, Comput. Phys. Commun. 270, 108166 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuelong Wu or Haibin Wu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11925401, 12234008, and 12074125), and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, Y., Zhang, L., Li, R. et al. Subrecoil cooling of 6Li atoms by 2S→3P ultraviolet narrow transition. Sci. China Phys. Mech. Astron. 66, 280313 (2023). https://doi.org/10.1007/s11433-023-2132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2132-6

Navigation