Skip to main content
Log in

Superconductivity above 70 K observed in lutetium polyhydrides

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The binary polyhydrides of heavy rare earth lutetium that shares a similar valence electron configuration to lanthanum have been experimentally discovered to be superconductive. The lutetium polyhydrides were successfully synthesized at high pressure and high temperature conditions using a diamond anvil cell in combinations with the in-situ high pressure laser heating technique. The resistance measurements as a function of temperature were performed at the same pressure of synthesis in order to study the transitions of superconductivity (SC). The superconducting transition with a maximum onset temperature (Tc) 71 K was observed at pressure of 218 GPa in the experiments. The Tc decreased to 65 K when pressure was at 181 GPa. From the evolution of SC at applied magnetic fields, the upper critical field at zero temperature \({\mu _0}{H_{c2}}(0)\) was obtained to be ∼36 T. The in-situ high pressure X-ray diffraction experiments imply that the high Tc SC should arise from the Lu4H23 phase with \(Pm\overline 3 n\) symmetry that forms a new type of hydrogen cage framework different from those reported for previous light rare earth polyhydride superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. W. Ashcroft, Phys. Rev. Lett. 21, 1748 (1968).

    Article  ADS  Google Scholar 

  2. E. Wigner, and H. B. Huntington, J. Chem. Phys. 3, 764 (1935).

    Article  ADS  Google Scholar 

  3. J. A. Xu, and Z. W. Zhu, Physics 6, 296 (1977).

    Google Scholar 

  4. N. W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004).

    Article  ADS  Google Scholar 

  5. Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, J. Chem. Phys. 140, 174712 (2014), arXiv: 1402.2721.

    Article  ADS  Google Scholar 

  6. D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Sci. Rep. 4, 6968 (2014).

    Article  ADS  Google Scholar 

  7. A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature 525, 73 (2015), arXiv: 1506.08190.

    Article  ADS  Google Scholar 

  8. J. A. Flores-Livas, L. Boeri, A. Sanna, G. Profeta, R. Arita, and M. Eremets, Phys. Rep. 856, 1 (2020), arXiv: 1905.06693.

    Article  ADS  MathSciNet  Google Scholar 

  9. D. V. Semenok, I. A. Kruglov, I. A. Savkin, A. G. Kvashnin, and A. R. Oganov, Curr. Opin. Solid State Mater. Sci. 24, 100808 (2020).

    Article  ADS  Google Scholar 

  10. K. P. Hilleke, and E. Zurek, Angew. Chem. Int. Ed. 61, e202207589 (2022).

    Article  Google Scholar 

  11. V. Struzhkin, B. Li, C. Ji, X. J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H. Mao, Matter Radiat. Extrem. 5, 028201 (2020).

    Article  Google Scholar 

  12. Z. M. Geballe, H. Liu, A. K. Mishra, M. Ahart, M. Somayazulu, Y. Meng, M. Baldini, and R. J. Hemley, Angew. Chem. Int. Ed. 57, 688 (2018).

    Article  Google Scholar 

  13. A. P. Drozdov, P. P. Kong, V. S. Minkov, S. P. Besedin, M. A. Kuzovnikov, S. Mozaffari, L. Balicas, F. F. Balakirev, D. E. Graf, V. B. Prakapenka, E. Greenberg, D. A. Knyazev, M. Tkacz, and M. I. Eremets, Nature 569, 528 (2019), arXiv: 1812.01561.

    Article  ADS  Google Scholar 

  14. M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).

    Article  ADS  Google Scholar 

  15. F. Hong, L. Yang, P. Shan, P. Yang, Z. Liu, J. Sun, Y. Yin, X. Yu, J. Cheng, and Z. Zhao, Chin. Phys. Lett. 37, 107401 (2020).

    Article  ADS  Google Scholar 

  16. P. Kong, V. S. Minkov, M. A. Kuzovnikov, A. P. Drozdov, S. P. Besedin, S. Mozaffari, L. Balicas, F. F. Balakirev, V. B. Prakapenka, S. Chariton, D. A. Knyazev, E. Greenberg, and M. I. Eremets, Nat. Commun. 12, 5075 (2021).

    Article  ADS  Google Scholar 

  17. E. Snider, N. Dasenbrock-Gammon, R. McBride, X. Wang, N. Meyers, K. V. Lawler, E. Zurek, A. Salamat, and R. P. Dias, Phys. Rev. Lett. 126, 117003 (2021), arXiv: 2012.13627.

    Article  ADS  Google Scholar 

  18. Z. Li, X. He, C. Zhang, X. Wang, S. Zhang, Y. Jia, S. Feng, K. Lu, J. Zhao, J. Zhang, B. Min, Y. Long, R. Yu, L. Wang, M. Ye, Z. Zhang, V. Prakapenka, S. Chariton, P. A. Ginsberg, J. Bass, S. Yuan, H. Liu, and C. Jin, Nat. Commun. 13, 2863 (2022), arXiv: 2103.16917.

    Article  ADS  Google Scholar 

  19. L. Ma, K. Wang, Y. Xie, X. Yang, Y. Wang, M. Zhou, H. Liu, X. Yu, Y. Zhao, H. Wang, G. Liu, and Y. Ma, Phys. Rev. Lett. 128, 167001 (2022).

    Article  ADS  Google Scholar 

  20. D. V. Semenok, A. G. Kvashnin, A. G. Ivanova, V. Svitlyk, V. Y. Fominski, A. V. Sadakov, O. A. Sobolevskiy, V. M. Pudalov, I. A. Troyan, and A. R. Oganov, Mater. Today 33, 36 (2020).

    Article  Google Scholar 

  21. F. Hong, P. F. Shan, L. X. Yang, B. B. Yue, P. T. Yang, Z. Y. Liu, J. P. Sun, J. H. Dai, H. Yu, Y. Y. Yin, X. H. Yu, J. G. Cheng, and Z. X. Zhao, Mater. Today Phys. 22, 100596 (2022).

    Article  Google Scholar 

  22. C. Zhang, X. He, Z. Li, S. Zhang, S. Feng, X. Wang, R. Yu, and C. Jin, Sci. Bull. 67, 907 (2022), arXiv: 2112.14439.

    Article  Google Scholar 

  23. C. L. Zhang, X. He, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, R. C. Yu, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin, Mater. Today Phys. 27, 100826 (2022).

    Article  Google Scholar 

  24. W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, Phys. Rev. Lett. 127, 117001 (2021), arXiv: 2101.01315.

    Article  ADS  Google Scholar 

  25. D. Zhou, D. V. Semenok, D. Duan, H. Xie, W. Chen, X. Huang, X. Li, B. Liu, A. R. Oganov, and T. Cui, Sci. Adv. 6, eaax6849 (2020), arXiv: 1904.06643.

    Article  ADS  Google Scholar 

  26. D. Zhou, D. V. Semenok, H. Xie, X. Huang, D. Duan, A. Aperis, P. M. Oppeneer, M. Galasso, A. I. Kartsev, A. G. Kvashnin, A. R. Oganov, and T. Cui, J. Am. Chem. Soc. 142, 2803 (2020).

    Article  Google Scholar 

  27. W. Sun, X. Kuang, H. D. J. Keen, C. Lu, and A. Hermann, Phys. Rev. B 102, 144524 (2020).

    Article  ADS  Google Scholar 

  28. Y. Jia, X. He, S. Feng, S. Zhang, C. Zhang, C. Ren, X. Wang, and C. Jin, Crystals 10, 1116 (2020).

    Article  Google Scholar 

  29. J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. USA 108, 24 (2011), arXiv: 1009.3691.

    Article  ADS  Google Scholar 

  30. S. J. Zhang, X. C. Wang, R. Sammynaiken, J. S. Tse, L. X. Yang, Z. Li, Q. Q. Liu, S. Desgreniers, Y. Yao, H. Z. Liu, and C. Q. Jin, Phys. Rev. B 80, 014506 (2009).

    Article  ADS  Google Scholar 

  31. D. V. Semenok, D. Zhou, A. G. Kvashnin, X. Huang, M. Galasso, I. A. Kruglov, A. G. Ivanova, A. G. Gavriliuk, W. Chen, N. V. Tkachenko, A. I. Boldyrev, I. Troyan, A. R. Oganov, and T. Cui, J. Phys. Chem. Lett. 12, 32 (2020).

    Article  Google Scholar 

  32. D. Laniel, F. Trybel, B. Winkler, F. Knoop, T. Fedotenko, S. Khandarkhaeva, A. Aslandukova, T. Meier, S. Chariton, K. Glazyrin, V. Milman, V. Prakapenka, I. A. Abrikosov, L. Dubrovinsky, and N. Dubrovinskaia, Nat. Commun. 13, 6987 (2022), arXiv: 2208.10418.

    Article  ADS  Google Scholar 

  33. M. Shao, S. Chen, W. Chen, K. Zhang, X. Huang, and T. Cui, Inorg. Chem. 60, 15330 (2021).

    Article  Google Scholar 

  34. F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, Phys. Rev. Lett. 119, 107001 (2017).

    Article  ADS  Google Scholar 

  35. H. Wang, J. S. Tse, K. Tanaka, T. Iitaka, and Y. Ma, Proc. Natl. Acad. Sci. USA 109, 6463 (2012), arXiv: 1203.0263.

    Article  ADS  Google Scholar 

  36. H. K. Mao, A. P. Jephcoat, R. J. Hemley, L. W. Finger, C. S. Zha, R. M. Hazen, and D. E. Cox, Science 239, 1131 (1988).

    Article  ADS  Google Scholar 

  37. N. Dasenbrock-Gammon, E. Snider, R. McBride, H. Pasan, D. Durkee, N. Khalvashi-Sutter, S. Munasinghe, S. E. Dissanayake, K. V. Lawler, A. Salamat, and R. P. Dias, Nature 615, 244 (2023).

    Article  ADS  Google Scholar 

  38. P. F. Shan, N. N. Wang, X. Q. Zheng, Q. Z. Qiu, Y. Y. Peng, and J. G. Cheng, Chin. Phys. Lett. 40, 46101 (2023).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiancheng Wang, Luhong Wang or Changqing Jin.

Additional information

This work was supported by the Natural Science Foundation of China, the National Key R&D Program of China, and Chinese Academy of Sciences through research projects (Grant Nos. 2018YFA0305700, 2021YFA1401800, and XDB33010200). The in-situ high pressure X-ray experiments were performed at GeoSoilEnviroCARS (the University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1634415). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory (Grant No. DE-AC02-06CH11357).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., He, X., Zhang, C. et al. Superconductivity above 70 K observed in lutetium polyhydrides. Sci. China Phys. Mech. Astron. 66, 267411 (2023). https://doi.org/10.1007/s11433-023-2101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2101-9

Navigation