Skip to main content
Log in

Interpretation of the η1 (1855) as a KK̄1(1400) + c.c. molecule

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

An exotic state with JPC = 1−+, denoted by η1(1855), was observed by BESIII Collaboration recently in J/ψγηη′. The fact that its mass is just below the threshold of KK̄1(1400) stimulates us to investigate whether this exotic state can be interpreted as a KK̄1(1400) + c.c. molecule or not. Using the one boson exchange model, we show that it is possible for KK̄1(1400) with JPC = 1−+ to bind together by taking the momentum cutoff Λ ≳ 2 GeV and yield the same binding energy as the experimental value when Λ ≈ 2.5 GeV. In this molecular picture, the predicted branch ratio Br(η1(1855) → ηη′) ≈ 15% is consistent with the experimental results, which again supports the molecular explanation of η1(1855). Relevant systems, namely KK̄1(1400) with JPC = 1−− and KK̄1(1270) with JPC = 1−±, are also investigated, some of which can be searched for in the future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann, Phys. Lett. 8, 214 (1964).

    Article  ADS  Google Scholar 

  2. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2, in Developments in the Quark Theory of Hadrons, Vol. 1. 1964–1978, edited by D. B. Lichtenberg, and S. P. Rosen (Hadronic Press, Nonantum, 1964), pp. 22–101.

    Google Scholar 

  3. E. Klempt, and A. Zaitsev, Phys. Rep. 454, 1 (2007), arXiv: 0708.4016.

    Article  ADS  Google Scholar 

  4. R. H. Dalitz, and S. F. Tuan, Phys. Rev. Lett. 2, 425 (1959).

    Article  ADS  Google Scholar 

  5. R. H. Dalitz, and S. F. Tuan, Ann. Phys. 10, 307 (1960).

    Article  ADS  Google Scholar 

  6. M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho, and S. G. Wojcicki, Phys. Rev. Lett. 6, 698 (1961).

    Article  ADS  Google Scholar 

  7. T. Hyodo, and M. Niiyama, Prog. Part. Nucl. Phys. 120, 103868 (2021), arXiv: 2010.07592.

    Article  Google Scholar 

  8. M. Mai, Eur. Phys. J. Spec. Top. 230, 1593 (2021), arXiv: 2010.00056.

    Article  Google Scholar 

  9. S. K. Choi, et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003), arXiv: hep-ex/0309032.

    Article  ADS  Google Scholar 

  10. H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092.

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Prog. Theor. Exp. Phys. 2016(6), 062C01 (2016), arXiv: 1603.09229.

    Article  Google Scholar 

  12. J. M. Richard, Few-Body Syst. 57, 1185 (2016), arXiv: 1606.08593.

    Article  ADS  Google Scholar 

  13. R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017), arXiv: 1610.04528.

    Article  ADS  Google Scholar 

  14. A. Esposito, A. Pilloni, and A. D. Polosa, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920.

    Article  ADS  MathSciNet  Google Scholar 

  15. F. K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B. S. Zou, Rev. Mod. Phys. 90, 015004 (2018), arXiv: 1705.00141.

    Article  ADS  Google Scholar 

  16. A. AH, J. S. Lange, and S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610.

    Article  ADS  Google Scholar 

  17. S. L. Olsen, T. Skwarnicki, and D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012.

    Article  ADS  Google Scholar 

  18. W. Altmannshofer, et al. (Belle II), Prog. Theor. Exp. Phys. 2019, 123C01 (2019), arXiv: 1808.10567 [Erratum: PTEP 2020, 029201 (2020)].

    Article  Google Scholar 

  19. Y. S. Kalashnikova, and A. V. Nefediev, Physics-Uspekhi 62, 568 (2019), arXiv: 1811.01324.

    Article  ADS  Google Scholar 

  20. A. Cerri, V. V. Gligorov, S. Malvezzi, J. M. Camalich, and J. Zupan, CERN Yellow Rep. Monogr. 7, 867 (2019).

    Google Scholar 

  21. Y. R. Liu, H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976.

    Article  ADS  Google Scholar 

  22. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, Phys. Rep. 873, 1 (2020), arXiv: 1907.07583.

    Article  ADS  Google Scholar 

  23. F. K. Guo, X. H. Liu, and S. Sakai, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030.

    Article  Google Scholar 

  24. G. Yang, J. Ping, and J. Segovia, Symmetry 12, 1869 (2020), arXiv: 2009.00238.

    Article  Google Scholar 

  25. P. G. Ortega, and D. R. Entern, Symmetry 13, 279 (2021), arXiv: 2012.10105.

    Article  Google Scholar 

  26. X.-K. Dong, F.-K. Guo, and B.-S. Zou, Progr. Phys. 41, 65 (2021).

    Google Scholar 

  27. X. K. Dong, F. K. Guo, and B. S. Zou, Commun. Theor. Phys. 73, 125201 (2021), arXiv: 2108.02673.

    Article  ADS  Google Scholar 

  28. S. Godfrey, and N. Isgur, Phys. Rev. D 32, 189 (1985).

    Article  ADS  Google Scholar 

  29. S. Capstick, and N. Isgur, AIP Conf. Proc. 132, 267 (1985).

    Article  ADS  Google Scholar 

  30. B. Aubert, et al. (BaBar), Phys. Rev. Lett. 95, 142001 (2005), arXiv: hep-ex/0506081.

    Article  ADS  Google Scholar 

  31. M. Ablikim, et al. (BESIII), Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949.

    Article  ADS  Google Scholar 

  32. Z. Q. Liu, et al. (Belle), Phys. Rev. Lett. 110, 252002 (2013) [Erratum: Phys. Rev. Lett. 111, 019901 (2013)].

    Article  ADS  Google Scholar 

  33. M. Ablikim, et al. (BESIII), Phys. Rev. Lett. 126, 102001 (2021).

    Article  ADS  Google Scholar 

  34. R. Aaij, et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015), arXiv: 1507.03414.

    Article  ADS  Google Scholar 

  35. R. Aaij, et al. (LHCb), Phys. Rev. Lett. 122, 222001 (2019).

    Article  ADS  Google Scholar 

  36. R. Aaij, et al. (LHCb), Sei. Bull. 66, 1278 (2021).

    Google Scholar 

  37. R. Aaij, et al. (LHCb), arXiv: 2109.01038.

  38. R. Aaij, et al. (LHCb), arXiv: 2109.01056.

  39. P. A. Zyla, et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020(8), 083C01 (2020).

    Article  Google Scholar 

  40. J. Kuhn, et al. (E852), Phys. Lett. B 595, 109 (2004), arXiv: hep-ex/0401004.

    Article  ADS  Google Scholar 

  41. M. Lu, et al. (E852), Phys. Rev. Lett. 94, 032002 (2005), arXiv: hep-ex/0405044.

    Article  ADS  Google Scholar 

  42. C. A. Meyer, and E. S. Swanson, Prog. Part. Nucl. Phys. 82, 21 (2015), arXiv: 1502.07276.

    Article  ADS  Google Scholar 

  43. M. Ablikim, et al. (BESIII), arXiv: 2202.00621.

  44. M. Ablikim, et al. (BESIII), arXiv: 2202.00623.

  45. H.-X. Chen, N. Su, and S.-L. Zhu, arXiv: 2202.04918.

  46. L. Qiu, and Q. Zhao, arXiv: 2202.00904.

  47. L. Burakovsky, and T. Goldman, Phys. Rev. D 56, R1368 (1997), arXiv: hep-ph/9703274.

    Article  ADS  Google Scholar 

  48. M. Suzuki, Phys. Rev. D 47, 1252 (1993).

    Article  ADS  Google Scholar 

  49. H. Y. Cheng, Phys. Rev. D 67, 094007 (2003), arXiv: hep-ph/0301198.

    Article  ADS  Google Scholar 

  50. K. C. Yang, Phys. Rev. D 84, 034035 (2011), arXiv: 1011.6113.

    Article  ADS  Google Scholar 

  51. H. Hatanaka, and K. C. Yang, Phys. Rev. D 77, 094023 (2008), arXiv: 0804.3198 [Erratum: Phys. Rev. D 78, 059902 (2008)].

    Article  ADS  Google Scholar 

  52. A. Tayduganov, E. Kou, and A. Le Yaouanc, Phys. Rev. D 85, 074011 (2012), arXiv: 1111.6307.

    Article  ADS  Google Scholar 

  53. F. Divotgey, L. Olbrich, and F. Giacosa, Eur. Phys. J. A 49, 135 (2013), arXiv: 1306.1193.

    Article  ADS  Google Scholar 

  54. Z. Q. Zhang, H. Guo, and S. Y. Wang, Eur. Phys. J. C 78, 219 (2018), arXiv: 1705.00524.

    Article  ADS  Google Scholar 

  55. L. Roca, E. Oset, and J. Singh, Phys. Rev. D 72, 014002 (2005), arXiv: hep-ph/0503273.

    Article  ADS  Google Scholar 

  56. L. S. Geng, E. Oset, L. Roca, and J. A. Oiler, Phys. Rev. D 75, 014017 (2007), arXiv: hep-ph/0610217.

    Article  ADS  Google Scholar 

  57. G. Y. Wang, L. Roca, and E. Oset, Phys. Rev. D 100, 074018 (2019), arXiv: 1907.09188.

    Article  ADS  Google Scholar 

  58. U. G. Meissner, Phys. Rep. 161, 213 (1988).

    Article  ADS  Google Scholar 

  59. Y. J. Zhang, H. C. Chiang, P. N. Shen, and B. S. Zou, Phys. Rev. D 74, 014013 (2006), arXiv: hep-ph/0604271.

    Article  ADS  Google Scholar 

  60. X. K. Dong, and B. S. Zou, Eur. Phys. J. A 57, 139 (2021), arXiv: 2009.11619.

    Article  ADS  Google Scholar 

  61. X. K. Dong, Y. H. Lin, and B. S. Zou, Phys. Rev. D 101, 076003 (2020), arXiv: 1910.14455.

    Article  ADS  Google Scholar 

  62. R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, and G. NarduUi, Phys. Rep. 281, 145 (1997).

    Article  ADS  Google Scholar 

  63. C. Isola, M. Ladisa, G. Nardulli, and P. Santorelli, Phys. Rev. D 68, 114001 (2003), arXiv: hep-ph/0307367.

    Article  ADS  Google Scholar 

  64. W. A. Bardeen, E. J. Eichten, and C. T. Hill, Phys. Rev. D 68, 054024 (2003), arXiv: hep-ph/0305049.

    Article  ADS  Google Scholar 

  65. N. A. Tornqvist, Z. Phys. C 61, 525 (1994), arXiv: hep-ph/9310247.

    Article  ADS  Google Scholar 

  66. T. J. Burns, and E. S. Swanson, Phys. Rev. D 100, 114033 (2019), arXiv: 1908.03528.

    Article  ADS  Google Scholar 

  67. N. Yalikun, Y. H. Lin, F. K. Guo, Y. Kamiya, and B. S. Zou, Phys. Rev. D 104, 094039 (2021), arXiv: 2109.03504.

    Article  ADS  Google Scholar 

  68. S. Weinberg, Phys. Rev. 137, B672 (1965).

  69. V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, and A. Kudryavtsev, Phys. Lett. B 586, 53 (2004), arXiv: hep-ph/0308129.

    Article  ADS  Google Scholar 

  70. V. Baru, A. A. Filin, C. Hanhart, Y. S. Kalashnikova, A. E. Kudryavtsev, and A. V. Nefediev, Phys. Rev. D 84, 074029 (2011), arXiv: 1108.5644.

    Article  ADS  Google Scholar 

  71. M. L. Du, V. Baru, X. K. Dong, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves, and Q. Wang, Phys. Rev. D 105, 014024 (2022), arXiv: 2110.13765.

    Article  ADS  Google Scholar 

  72. F. K. Guo, and U.-G. Meißner, Phys. Rev. D 84, 014013 (2011), arXiv: 1102.3536.

    Article  ADS  Google Scholar 

  73. R. Molina, D. Nicmorus, and E. Oset, Phys. Rev. D 78, 114018 (2008), arXiv: 2010.14955.

    Article  ADS  Google Scholar 

  74. A. J. Woss, J. J. Dudek, R. G. Edwards, C. E. Thomas, and D. J. Wilson, Phys. Rev. D 103, 054502 (2021), arXiv: 2009.10034.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Song Zou.

Additional information

We thank Feng-Kun Guo, Xiao-Yu Li, Jia-Jun Wu, and Mao-Jun Yan for useful discussions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12070131001,11835015, and 12047503), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (Grant No. 196253076-TRR 110) through the funds provided to the Sino German Collaborative Research Center TRR110 Symmetries and the Emergence of Structure in QCD, and the Chinese Academy of Sciences (CAS) (Grant No. XDB34030000).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, XK., Lin, YH. & Zou, BS. Interpretation of the η1 (1855) as a KK̄1(1400) + c.c. molecule. Sci. China Phys. Mech. Astron. 65, 261011 (2022). https://doi.org/10.1007/s11433-022-1887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1887-5

Keywords

PACS numbers

Navigation