Skip to main content
Log in

In-situ optical pumping for polarizing 3He neutron spin filters at the China Spallation Neutron Source

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we present the performance of a recently developed in-situ spin-exchange optically pumped3 He-neutron spin filter system at the China Spallation Neutron Source (CSNS). The system achieved a 3He polarization of over 74% at the beamline BL-20. Analysis of neutron transmission experiment results reveals a neutron polarization of > 90% and an average transmission of 27% for 2.2 Å neutrons, which were maintained for a duration of 120 h of beam time. To the best of our knowledge, this is the first in-situ hyperpolarized 3He system incorporated on a neutron beamline in China. This technology is expected to provide stable, wide-angle, and highly polarized neutrons at the CSNS for materials research and fundamental neutron physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Moon, T. Riste, and W. C. Koehler, Phys. Rev. 181, 920 (1969).

    Article  ADS  Google Scholar 

  2. B. P. Toperverg, R. Kampmann, V. V. Lauter-Pasyuk, H. J. Lauter, U. Tietze, D. Solina, and A. Schreyer, Phys. B-Condens. Matter 397, 141 (2007).

    Article  ADS  Google Scholar 

  3. V. Lauter-Pasyuk, H. J. Lauter, B. P. Toperverg, L. Romashev, and V. Ustinov, Phys. Rev. Lett. 89, 167203 (2002).

    Article  ADS  Google Scholar 

  4. O. Zaharko, H. R0nnow, J. Mesot, S. J. Crowe, D. M. K. Paul, P. J. Brown, A. Daoud-Aladine, A. Meents, A. Wagner, M. Prester, and H. Berger, Phys. Rev. B 73, 064422 (2006), arXiv: cond-mat/0512617.

    Article  ADS  Google Scholar 

  5. K. L. Krycka, J. A. Borchers, R. A. Booth, Y. Ijiri, K. Hasz, J. J. Rhyne, and S. A. Majetich, Phys. Rev. Lett. 113, 147203 (2014).

    Article  ADS  Google Scholar 

  6. A. Poole, A. S. Wills, and E. Leliévre-Berna, J. Phys.-Condens. Matter 19, 452201 (2007).

    Article  ADS  Google Scholar 

  7. Y. Nambu, J. Barker, Y. Okino, T. Kikkawa, Y. Shiomi, M. Enderle, T. Weber, B. Winn, M. Graves-Brook, J. M. Tranquada, T. Ziman, M. Fujita, G. E. W. Bauer, E. Saitoh, and K. Kakurai, Phys. Rev. Lett. 125, 027201 (2020), arXiv: 1911.11968.

    Article  ADS  Google Scholar 

  8. T. Okudaira, T. Oku, T. Ino, H. Hayashida, H. Kira, K. Sakai, K. Hiroi, S. Takahashi, K. Aizawa, H. Endo, S. Endo, M. Hino, K. Hirota, T. Honda, K. Ikeda, K. Kakurai, W. Kambara, M. Kitaguchi, T. Oda, H. Ohshita, T. Otomo, H. M. Shimizu, T. Shinohara, J. Suzuki, and T. Yamamoto, Nucl. Instrum. Methods Phys. Res. Sect. A 977, 164301 (2020), arXiv: 2005.14399.

    Article  Google Scholar 

  9. Z. Salhi, E. Babcock, K. Bingöl, K. Bussmann, H. Kammerling, V. Ossovyi, A. Heynen, H. Deng, V. Hutanu, S. Masalovich, J. Voigt, and A. Ioffe, J. Phys.-Conf. Ser. 1316, 012009 (2019).

    Article  Google Scholar 

  10. S. Lee, M. K. Moon, J. Kim, S. J. Cho, J. H. Lee, C. H. Lee, S. W. Lee, and T. Ino, J. Phys.-Conf. Ser. 711, 012014 (2016).

    Article  Google Scholar 

  11. C.Y. Jiang, X. Tong, T. H. Wang, L. Mcdonald, L. Robertson, J. Ruff, and N. Silva, in Development of polarized3He neutron spin filters at Oak Ridge National Laboratory: Proceedings of the 18th International Workshop on Polarized Sources, Targets, and Polarimetry, Knoxville, 2019.

  12. I. Dhiman, R. Ziesche, T. Wang, H. Bilheux, L. Santodonato, X. Tong, C. Y Jiang, I. Manke, W. Treimer, T. Chatterji, and N. Kardjilov, Rev. Sci. Instrum. 88, 095103 (2017).

    Article  ADS  Google Scholar 

  13. C. J. Beecham, S. Boag, C. D. Frost, T. J. McKetterick, J. R. Stewart, K. H. Andersen, P. M. Bentley, and D. Jullien, Phys. B-Condens. Matter 406, 2429 (2011).

    Article  ADS  Google Scholar 

  14. A. Freund, R. Pynn, W. G. Stirling, and C. M. E. Zeyen, Phys. B+C 120, 86 (1983).

    Article  ADS  Google Scholar 

  15. X. Tong, J. L. Robertson, and R. Pynn, Nucl. Instrum. Methods Phys. Res. Sect. A 768, 77 (2014).

    Article  ADS  Google Scholar 

  16. J. E. Purcell, and C. G. Sheu, Nucl. Data Sheets 130, 1 (2015).

    Article  ADS  Google Scholar 

  17. M. Musgrave, R. Milner, G. Atoian, E. Beebe, S. Ikeda, S. Kondrashev, M. Okamura, A. Poblaguev, D. Raparia, J. Ritter, S. Trabocchi, A. Zelenski, and J. Maxwell, in Development of a polarized3He++ ion source for the EIC: Proceedings of the 18th International Workshop on Polarized Sources, Targets, and Polarimetry, Knoxville, 2019.

  18. M. Musgrave, R. Milner, G. Atoian, E. Beebe, S. Kondrashev, A. Pikin, D. Raparia, J. Ritter, A. Zelenski, and J. Maxwell, in Polarized3He++ ion source for RHIC and an EIC: Proceedings of the XVII International Workshop on Polarized Sources, Targets & Polarimetry, Kaist, 2017.

  19. N. R. Roberson, C. R. Gould, and J. D. Bowman, Tests of Time Reversal Invariance in Neutron Physics: April 17–19, 1987, Chapel Hill, NC (World Scientific, Singapore, 1987).

    Google Scholar 

  20. K. P. Coulter, A. B. McDonald, W. Happer, T. E. Chupp, and M. E. Wagshul, Nucl. Instrum. Methods Phys. Res. Sect. A 270, 90 (1988).

    Article  ADS  Google Scholar 

  21. L. F. Donnelly, J. R. MacFall, H. P. McAdams, J. M. Majure, J. Smith, D. P. Frush, P. Bogonad, H. C. Charles, and C. E. Ravin, Radiology 212, 885 (1999).

    Article  Google Scholar 

  22. A. Kraft, H. C. Koch, M. Daum, W. Heil, T. Lauer, D. Neumann, A. Pazgalev, Y. Sobolev, and A. Weis, EPJ Techn. Instrum. 1, 8 (2014).

    Article  Google Scholar 

  23. J. Füzi, Neutron Beam Phase Space Mapping (Springer, Berlin, 2008).

    Book  Google Scholar 

  24. C. D. Keith, T. C. Black, X. Fei, M. Flamini, T. R. Gentile, G. L. Jones, D. R. Rich, W. M. Snow, A. K. Thompson, and F. E. Wietfeldt, Nucl. Instrum. Methods Phys. Res. Sect. A 402, 236 (1998).

    Article  ADS  Google Scholar 

  25. T. R. Gentile, P. J. Nacher, B. Saarn, and T. G. Walker, Rev. Mod. Phys. 89, 045004 (2017), arXiv: 1612.04178.

    Article  ADS  Google Scholar 

  26. A. V. Feoktystov, H. Frielinghaus, Z. Di, S. Jaksch, V. Pipich, M. S. Appavou, E. Babcock, R. Hanslik, R. Engels, G. Kemmerling, H. Kleines, A. Ioffe, D. Richter, and T. Brückel, J. Appl. Cryst. 48, 61 (2015).

    Article  Google Scholar 

  27. C. D. Dewhurst, I. Grillo, D. Honecker, M. Bonnaud, M. Jacques, C. Amrouni, A. Perillo-Marcone, G. Manzin, and R. Cubitt, J. Appl. Cryst. 49, 1 (2016).

    Article  Google Scholar 

  28. W. Kreuzpaintner, S. Masalovich, J. F. Moulin, B. Wiedemann, J. Ye, S. Mayr, A. Paul, M. Haese, M. Pomm, and P. Böni, Nucl. Instrum. Methods Phys. Res. Sect. A 848, 144 (2017), arXiv: 1604.00816.

    Article  ADS  Google Scholar 

  29. W. C. Chen, T. R. Gentile, Q. Ye, A. Kirchhoff, S. M. Watson, J. A. Rodriguez-Rivera, Y. Qiu, and C. Broholm, J. Phys.-Conf. Ser. 746, 012016 (2016).

    Article  Google Scholar 

  30. Y. Y. Jau, D. S. Hussey, T. R. Gentile, and W. Chen, Phys. Rev. Lett. 125, 110801 (2020), arXiv: 2006.03728.

    Article  ADS  Google Scholar 

  31. T. Wang, C. Y. Jiang, H. Z. Bilheux, I. Dhiman, J. C. Bilheux, L. Crow, L. McDonald, L. Robertson, N. Kardjilov, R. Pyrin, and X. Tong, Rev. Sci. Instrum. 90, 033705 (2019).

    Article  ADS  Google Scholar 

  32. S. K. Lamoreaux, and R. Golub, J. Phys. G-Nucl. Part. Phys. 36, 104002 (2009).

    Article  ADS  Google Scholar 

  33. D. Blyth, J. Fry, N. Fomin, R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, A. Barzilov, J. D. Bowman, N. Birge, J. R. Calarco, T. E. Chupp, V. Cianciolo, C. E. Coppola, C. B. Crawford, K. Craycraft, D. Evans, C. Fieseler, E. Frlež, I. Garishvili, M. T. W. Gericke, R. C. Gillis, K. B. Grammer, G. L. Greene, J. Hall, J. Hamblen, C. Hayes, E. B. Iverson, M. L. Kabir, S. Kucuker, B. Lauss, R. Mahurin, M. McCrea, M. Maldonado-Velázquez, Y. Masuda, J. Mei, R. Milburn, P. E. Mueller, M. Musgrave, H. Nann, I. Novikov, D. Parsons, S. I. Penttilä, D. Počanić, A. Ramirez-Morales, M. Root, A. Salas-Bacci, S. Santra, S. Schröder, E. Scott, P. N. Seo, E. I. Sharapov, F. Simmons, W. M. Snow, A. Sprow, J. Stewart, E. Tang, Z. Tang, X. Tong, D. J. Turkoglu, R. Whitehead, and W. S. Wilburn, Phys. Rev. Lett. 121, 242002 (2018), arXiv: 1807.10192.

    Article  ADS  Google Scholar 

  34. C. Huang, J. Zhang, F. Ye, Z. Qin, S. M. Amir, Z. N. Buck, A. Salman, W. Kreuzpaintner, X. Qi, T. Wang, and X. Tong, Chin. Phys. Lett. 38, 092801 (2021).

    Article  ADS  Google Scholar 

  35. T. G. Walker, and W. Happer, Rev. Mod. Phys. 69, 629 (1997).

    Article  ADS  Google Scholar 

  36. M. Sharma, E. Babcock, K. H. Andersen, L. Barrón-Palos, M. Becker, S. Boag, W. C. Chen, T. E. Chupp, A. Danagoulian, T. R. Gentile, A. Klein, S. Penttila, A. Petoukhov, T. Soldner, E. R. Tardiff, T. G. Walker, and W. S. Wilburn, Phys. Rev. Lett. 101, 083002 (2008), arXiv: 0802.3169.

    Article  ADS  Google Scholar 

  37. C. Y. Jiang, X. Tong, D. R. Brown, A. Glavic, H. Ambaye, R. Goyette, M. Hoffmann, A. A. Parizzi, L. Robertson, and V. Lauter, Rev. Sci. Instrum. 88, 025111 (2017).

    Article  ADS  Google Scholar 

  38. D. Berikov, G. Ahmadov, Y. Kopatch, A. Gagarski, V. Novitsky, H. Deng, G. Danilyan, S. Masalovich, Z. Salhi, E. Babcock, J. Klenke, and V. Hutanu, Phys. Rev. C 104, 024607 (2021).

    Article  ADS  Google Scholar 

  39. T. Wang, C. Y. Jiang, T. O. Farmer, L. Debeer-Schmitt, J. F. Wenzel, L. McDonald, J. L. Robertson, M. R. Fitzsimmsons, and X. Tong, Phys. B-Condens. Matter 551, 492 (2018).

    Article  ADS  Google Scholar 

  40. G. D. Cates, S. R. Schaefer, and W. Happer, Phys. Rev. A 37, 2877 (1988).

    Article  ADS  Google Scholar 

  41. X. Tong, C. Y. Jiang, V. Lauter, H. Ambaye, D. Brown, L. Crow, T. R. Gentile, R. Goyette, W. T. Lee, A. Parizzi, and J. L. Robertson, Rev. Sei. Instrum. 83, 075101 (2012).

    Article  ADS  Google Scholar 

  42. E. Babcock, Z. Salhi, T. Theisselmann, D. Starostin, J. Schmeissner, A. Feoktystov, S. Mattauch, P. Pistel, A. Radulescu, and A. Ioffe, J. Phys.-Conf. Ser. 711, 012008 (2016).

    Article  Google Scholar 

  43. S. R. Parnell, E. B. Woolley, S. Boag, and C. D. Frost, Meas. Sci. Technol. 19, 045601 (2008).

    Article  ADS  Google Scholar 

  44. T. J. McKetterick, S. Boag, J. R. Stewart, C. D. Frost, M. W. A. Skoda, S. R. Parnell, and E. Babcock, Phys. B-Condens. Matter 406, 2436 (2011).

    Article  ADS  Google Scholar 

  45. T. Ino, Y. Arimoto, H. M. Shimizu, Y. Sakaguchi, K. Sakai, H. Kira, T. Shinohara, T. Oku, J. Suzuki, K. Kakurai, and L. J. Chang, J. Phys.-Conf. Ser. 340, 012006 (2012).

    Article  Google Scholar 

  46. E. Babcock, I. A. Nelson, S. Kadlecek, and T. G. Walker, Phys. Rev. A 71, 013414 (2005).

    Article  ADS  Google Scholar 

  47. Z. Qin, C. Huang, Z. N. Buck, W. Kreuzpaintner, S. M. Amir, A. Salman, F. Ye, J. Zhang, C. Jiang, T. Wang, and X. Tong, Chin. Phys. Lett. 38, 052801 (2021).

    Article  ADS  Google Scholar 

  48. M. Batz, S. Baessler, W. Heil, E. W. Often, D. Rudersdorf, J. Schmiedeskamp, Y. Sobolev, and M. Wolf, J. Res. Natl. Inst. Stand. Technol. 110, 293 (2005).

    Article  Google Scholar 

  49. W. Heil, J. Dreyer, D. Hofmann, H. Humblot, E. Lelievre-Berna, and F. Tasset, Phys. B-Condens. Matter 267–268, 328 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianhao Wang or Xin Tong.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0406000), National Natural Science Foundation of China (Grant No. 11875265), Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. ZD-KYYQ20190004), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019B1515120079), and Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents (Grant No. 20191122). We give special thanks to our glassblower Junsong Xie, who has been supportive in this project since the beginning. We are grateful to Dr. Songlin Wang for his guidance during the neutron tests on BL-20 at the CSNS. We also thank Michael Souza from Princeton University, United States of America for his generous advice and technical help to our work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, C., Qin, Z. et al. In-situ optical pumping for polarizing 3He neutron spin filters at the China Spallation Neutron Source. Sci. China Phys. Mech. Astron. 65, 241011 (2022). https://doi.org/10.1007/s11433-021-1876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1876-0

Keywords

Navigation