Skip to main content
Log in

Broadband and tunable terahertz absorption via photogenerated carriers in undoped silicon

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Terahertz absorbers based on doped silicon have achieved broadband and high-efficiency absorption due to their high concentration of carriers. However, their tunable performance is obviously insufficient. Here, we propose a new scheme for active terahertz absorption based on undoped silicon with a metamaterial antireflection layer, which realizes both strong absorption and ultrahigh modulation depth. Benefiting from the weak absorption and high transmission of undoped silicon for 1064-nm continuous wave, uniformly distributed carriers across the entire thickness of the absorber are excited, and efficient free carrier absorption of the terahertz wave is obtained. We use only a 500-μm thick absorber and achieve absorption greater than 90% in the range of 0.58 to 1.92 THz, with a peak value of 99%. More important, the absorber can be switched between two working states of nonabsorption and high-efficiency absorption by changing the pump power, which means the modulation depth reaches 100%. This simple and high-performance implementation scheme provides a new idea for the design of terahertz tunable absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. Appl. 3, 037001 (2015).

    Article  ADS  Google Scholar 

  2. X. Jian, B. Wu, Y. Wei, S. X. Dou, X. Wang, W. He, and N. Mahmood, ACS Appl. Mater. Interfaces 8, 6101 (2016).

    Article  Google Scholar 

  3. N. Li, G. W. Huang, Y. Q. Li, H. M. Xiao, Q. P. Feng, N. Hu, and S. Y. Fu, ACS Appl. Mater. Interfaces 9, 2973 (2017).

    Article  Google Scholar 

  4. Y. Xiong, H. Luo, Y. Nie, F. Chen, W. Dai, X. Wang, Y. Cheng, and R. Gong, J. Alloys Compd. 802, 364 (2019).

    Article  Google Scholar 

  5. Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, Adv. Funct. Mater. 28, 1704363 (2018).

    Article  Google Scholar 

  6. W. Ma, H. Chen, S. Hou, Z. Huang, Y. Huang, S. Xu, F. Fan, and Y. Chen, ACS Appl. Mater. Interfaces 11, 25369 (2019).

    Article  Google Scholar 

  7. M. Chen, Y. Wang, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, ACS Appl. Mater. Interfaces 11, 6411 (2019).

    Article  Google Scholar 

  8. Z. Huang, H. Chen, S. Xu, L. Y. Chen, Y. Huang, Z. Ge, W. Ma, J. Liang, F. Fan, S. Chang, and Y. Chen, Adv. Opt. Mater. 6, 1801165 (2018).

    Article  Google Scholar 

  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008), arXiv: 0803.1670.

    Article  ADS  Google Scholar 

  10. X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, Laser Photon. Rev. 10, 962 (2016).

    Article  ADS  Google Scholar 

  11. Z. Cui, D. Zhu, L. Yue, H. Hu, S. Chen, X. Wang, and Y. Wang, Opt. Express 27, 22190 (2019).

    Article  ADS  Google Scholar 

  12. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, Nat. Commun. 6, 8379 (2015).

    Article  ADS  Google Scholar 

  13. X. Chen, Z. Tian, Y. Lu, Y. Xu, X. Zhang, C. Ouyang, J. Gu, J. Han, and W. Zhang, Adv. Opt. Mater. 8, 1900660 (2020).

    Article  Google Scholar 

  14. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, Opt. Express 25, 23873 (2017).

    Article  ADS  Google Scholar 

  15. L. Sun, M. Zhu, C. Zhao, P. Song, Y. Wang, D. Xiao, H. Liu, S. H. Tsang, E. H. T. Teo, F. Hu, and L. Tu, Carbon 154, 503 (2019).

    Article  Google Scholar 

  16. W. Shui, J. Li, H. Wang, Y. Xing, Y. Li, Q. Yang, X. Xiao, Q. Wen, and H. Zhang, Adv. Opt. Mater. 8, 2001120 (2020).

    Article  Google Scholar 

  17. X. You, A. Upadhyay, Y. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, and W. Withayachumnankul, Opt. Lett. 45, 1196 (2020).

    Article  ADS  Google Scholar 

  18. W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, ACS Photon. 1, 625 (2014).

    Article  Google Scholar 

  19. J. Zhang, K. Pan, and J. Qiu, Phys. Status Solidi RRL 15, 2100031 (2021).

    Article  Google Scholar 

  20. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, Appl. Phys. Lett. 107, 073903 (2015).

    Article  ADS  Google Scholar 

  21. C. Shi, X. F. Zang, L. Chen, Y. Peng, B. Cai, G. R. Nash, and Y. M. Zhu, IEEE Trans. Terahertz Sci. Technol. 6, 40 (2015).

    Article  ADS  Google Scholar 

  22. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, Opt. Express 20, 2246 (2012).

    Article  ADS  Google Scholar 

  23. J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, X. Luo, IEEE Photon. J. 10, 1 (2018).

    Google Scholar 

  24. S. Xu, F. Fan, J. Cheng, H. Chen, W. Ma, Y. Huang, and S. Chang, Adv. Opt. Mater. 7, 1900555 (2019).

    Article  Google Scholar 

  25. H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang, and Y. Chen, Adv. Opt. Mater. 7, 1801318 (2019).

    Article  Google Scholar 

  26. X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, ACS Photon. 6, 830 (2019).

    Article  Google Scholar 

  27. H. Cai, Q. Huang, X. Hu, Y. Liu, Z. Fu, Y. Zhao, H. He, and Y. Lu, Adv. Opt. Mater. 6, 1800143 (2018).

    Article  Google Scholar 

  28. H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, Adv. Opt. Mater. 6, 1700773 (2018).

    Article  Google Scholar 

  29. K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, Adv. Mater. 30, 1800278 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yating Zhang or Jianquan Yao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61675147, 61735010, and 91838301), and National Key Research and Development Program of China (Grant No. 2017YFA0700202).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, J., Zheng, C. et al. Broadband and tunable terahertz absorption via photogenerated carriers in undoped silicon. Sci. China Phys. Mech. Astron. 65, 214211 (2022). https://doi.org/10.1007/s11433-021-1799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1799-7

Keywords

Navigation