Skip to main content
Log in

Investigating the co-evolution of massive black holes in dual active galactic nuclei and their host galaxies via galaxy merger simulations

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Major galaxy mergers can trigger nuclear activities and are responsible for high-luminosity quasi-stellar objects/active galactic nuclei (QSOs/AGNs). In certain circumstances, such mergers may cause dual active galactic nuclei (dAGN) phenomenon. This study investigates dAGN triggering and evolution of massive black holes (MBHs) during the merging processes using hydro- dynamic code GADGET-2 to simulate several gas-rich major mergers at redshift z = 2 and 3, respectively. Results reveal that gas-rich major mergers can trigger significant nuclear activities after the second and third pericentric passages and the formation of dAGN with significant time duration (~ 10–390 Myr). During the merging processes, galactic bulge evolves with time because of the rapid star formation in each (or both) galactic centers and initial mixing of stars in galactic disks due to violent relaxation. MBHs grow substantially due to accretion and finally merge into a bigger black hole. The growth of galactic bulges and cor- responding increases of its velocity dispersions predate the growth of MBHs in the dAGN stages. The MBHs in these stages deviate below the relation between MBH mass and bulge mass (or velocity dispersion), and they revert to the relation after the final mergers due to the significant accretion that occurs mostly at a separation less than a few kpc. Then, the two MBHs merge with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. E. Salpeter, Astrophys. J. 140, 796 (1964).

    ADS  Google Scholar 

  2. D. Lynden-bell, Nature 223, 690 (1969).

    ADS  Google Scholar 

  3. J. H. Krolik, Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment (Princeton University Press, Princeton, 1999).

    Google Scholar 

  4. J. Silk, and M. J. Rees, Astron. Astrophys. 331, L1 (1998).

    ADS  Google Scholar 

  5. A. King, Astrophys. J. 596, L27 (2003).

    ADS  Google Scholar 

  6. A. C. Fabian, Annu. Rev. Astron. Astrophys. 50, 455 (2012), arXiv: 1204.4114.

    ADS  Google Scholar 

  7. T. M. Heckman, and P. N. Best, Annu. Rev. Astron. Astrophys. 52, 589 (2014), arXiv: 1403.4620.

    ADS  Google Scholar 

  8. A. King, and K. Pounds, Annu. Rev. Astron. Astrophys. 53, 115 (2015), arXiv: 1503.05206.

    ADS  Google Scholar 

  9. J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S. M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, and T. Lauer, Astron. J. 115, 2285 (1998).

    ADS  Google Scholar 

  10. L. Ferrarese, and D. Merritt, Astrophys. J. 539, L9 (2000).

    ADS  Google Scholar 

  11. K. Gebhardt, R. Bender, G. Bower, A. Dressler, S. M. Faber, A. V. Filippenko, R. Green, C. Grillmair, L. C. Ho, J. Kormendy, T. R. Lauer, J. Magorrian, J. Pinkney, D. Richstone, and S. Tremaine, Astrophys. J. 539, L13 (2000).

    ADS  Google Scholar 

  12. S. Tremaine, K. Gebhardt, R. Bender, G. Bower, A. Dressler, S. M. Faber, A. V. Filippenko, R. Green, C. Grillmair, L. C. Ho, J. Kormendy, T. R. Lauer, J. Magorrian, J. Pinkney, and D. Richstone, Astrophys. J. 574, 740 (2002).

    ADS  Google Scholar 

  13. J. Kormendy, and L. C. Ho, Annu. Rev. Astron. Astrophys. 51, 511 (2013), arXiv: 1304.7762.

    ADS  Google Scholar 

  14. A. W. Graham, Galaxy Bulges and Their Massive Black Holes: A Review, in Galactic Bulges, edited by E. Laurikainen, R. Peletier, and D. Gadotti (Springer, Switzerland, 2016), p. 263.

    Google Scholar 

  15. V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and F. Pearce, Nature 435, 629 (2005).

    ADS  Google Scholar 

  16. L. Hernquist, Nature 340, 687 (1989).

    ADS  Google Scholar 

  17. S. L. Ellison, D. R. Patton, J. T. Mendel, and J. M. Scudder, Mon. Not. R. Astron. Soc. 418, 2043 (2011), arXiv: 1108.2711.

    ADS  Google Scholar 

  18. R. S. Barrows, J. M. Comerford, J. E. Greene, and D. Pooley, Astrophys. J. 838, 129 (2017), arXiv: 1703.06143.

    ADS  Google Scholar 

  19. A. K. Weigel, K. Schawinski, E. Treister, B. Trakhtenbrot, and D. B. Sanders, Mon. Not. R. Astron. Soc. 476, 2308 (2018), arXiv: 1802.04277.

    ADS  Google Scholar 

  20. E. Treister, K. Schawinski, C. M. Urry, and B. D. Simmons, Astrophys. J. 758, L39 (2012), arXiv: 1209.5393.

    ADS  Google Scholar 

  21. N. Menci, M. Gatti, F. Fiore, and A. Lamastra, Astron. Astrophys. 569, A37 (2014), arXiv: 1406.7740.

    ADS  Google Scholar 

  22. S. Satyapal, S. L. Ellison, W. McAlpine, R. C. Hickox, D. R. Patton, and J. T. Mendel, Mon. Not. R. Astron. Soc. 441, 1297 (2014), arXiv: 1403.7531.

    ADS  Google Scholar 

  23. J. Hong, M. Im, M. Kim, and L. C. Ho, Astrophys. J. 804, 34 (2015), arXiv: 1505.00230.

    ADS  Google Scholar 

  24. J. L. Donley, J. Kartaltepe, D. Kocevski, M. Salvato, P. Santini, H. Suh, F. Civano, A. M. Koekemoer, J. Trump, M. Brusa, C. Cardamone, A. Castro, M. Cisternas, C. Conselice, D. Croton, N. Hathi, C. Liu, R. A. Lucas, P. Nair, D. Rosario, D. Sanders, B. Simmons, C. Villforth, D. M. Alexander, E. F. Bell, S. M. Faber, N. A. Grogin, J. Lotz, D. H. McIntosh, and T. Nagao, Astrophys. J. 853, 63 (2018), arXiv: 1712.02424.

    ADS  Google Scholar 

  25. A. D. Goulding, J. E. Greene, R. Bezanson, J. Greco, S. Johnson, A. Leauthaud, Y. Matsuoka, E. Medezinski, and A. M. Price-Whelan, Publ. Astron. Soc. Jpn. 70, S37 (2018), arXiv: 1706.07436.

    ADS  Google Scholar 

  26. M. Cisternas, K. Jahnke, K. J. Inskip, J. Kartaltepe, A. M. Koekemoer, T. Lisker, A. R. Robaina, M. Scodeggio, K. Sheth, J. R. Trump, R. Andrae, T. Miyaji, E. Lusso, M. Brusa, P. Capak, N. Cappelluti, F. Civano, O. Ilbert, C. D. Impey, A. Leauthaud, S. J. Lilly, M. Salvato, N. Z. Scoville, and Y. Taniguchi, Astrophys. J. 726, 57 (2011), arXiv: 1009.3265.

    ADS  Google Scholar 

  27. D. D. Kocevski, S. M. Faber, M. Mozena, A. M. Koekemoer, K. Nandra, C. Rangel, E. S. Laird, M. Brusa, S. Wuyts, J. R. Trump, D. C. Koo, R. S. Somerville, E. F. Bell, J. M. Lotz, D. M. Alexander, F. Bournaud, C. J. Conselice, T. Dahlen, A. Dekel, J. L. Donley, J. S. Dunlop, A. Finoguenov, A. Georgakakis, M. Giavalisco, Y. Guo, N. A. Grogin, N. P. Hathi, S. Juneau, J. S. Kartaltepe, R. A. Lucas, E. J. McGrath, D. H. McIntosh, B. Mobasher, A. R. Robaina, D. Rosario, A. N. Straughn, A. van der Wel, and C. Villforth, Astrophys. J. 744, 148 (2012), arXiv: 1109.2588.

    ADS  Google Scholar 

  28. T. Hewlett, C. Villforth, V. Wild, J. Mendez-Abreu, M. Pawlik, and K. Rowlands, Mon. Not. R. Astron. Soc. 470, 755 (2017), arXiv: 1705.03769.

    ADS  Google Scholar 

  29. E. K. Lofthouse, S. Kaviraj, C. J. Conselice, A. Mortlock, and W. Hartley, Mon. Not. R. Astron. Soc. 465, 2895 (2017), arXiv: 1608.03892.

    ADS  Google Scholar 

  30. C. Villforth, H. Herbst, F. Hamann, T. Hamilton, C. Bertemes, A. Efthymiadou, and T. Hewlett, Mon. Not. R. Astron. Soc. 483, 2441 (2019), arXiv: 1811.11773.

    ADS  Google Scholar 

  31. S. Komossa, V. Burwitz, G. Hasinger, P. Predehl, J. S. Kaastra, and Y. Ikebe, Astrophys. J. 582, L15 (2003).

    ADS  Google Scholar 

  32. M. Koss, R. Mushotzky, S. Veilleux, R. Vasudevan, N. Miller, D. B. Sanders, K. Schawinski, and M. Trippe, Astrophys. J. 735, L42 (2011), arXiv: 1106.2163.

    ADS  Google Scholar 

  33. M. Koss, R. Mushotzky, E. Treister, S. Veilleux, R. Vasudevan, and M. Trippe, Astrophys. J. 746, L22 (2012), arXiv: 1201.2944.

    ADS  Google Scholar 

  34. S. Van Wassenhove, M. Volonteri, L. Mayer, M. Dotti, J. Bellovary, and S. Callegari, Astrophys. J. 748, L7 (2012), arXiv: 1111.0223.

    ADS  Google Scholar 

  35. H. Zhou, T. Wang, X. Zhang, X. Dong, and C. Li, Astrophys. J. 604, L33 (2004).

    ADS  Google Scholar 

  36. J. M. Wang, Y. M. Chen, C. Hu, W. M. Mao, S. Zhang, and W. H. Bian, Astrophys. J. 705, L76 (2009), arXiv: 0910.0580.

    ADS  Google Scholar 

  37. D. Xu, and S. Komossa, Astrophys. J. 705, L20 (2009), arXiv: 0908.3140.

    ADS  Google Scholar 

  38. J. M. Comerford, B. F. Gerke, J. A. Newman, M. Davis, R. Yan, M. C. Cooper, S. M. Faber, D. C. Koo, A. L. Coil, D. J. Rosario, and A. A. Dutton, Astrophys. J. 698, 956 (2009), arXiv: 0810.3235.

    ADS  Google Scholar 

  39. X. Liu, Y. Shen, M. A. Strauss, and J. E. Greene, Astrophys. J. 708, 427 (2010), arXiv: 0908.2426.

    ADS  Google Scholar 

  40. X. Liu, J. E. Greene, Y. Shen, and M. A. Strauss, Astrophys. J. 715, L30 (2010), arXiv: 1003.3467.

    ADS  Google Scholar 

  41. H. Fu, A. D. Myers, S. G. Djorgovski, and L. Yan, Astrophys. J. 733, 103 (2011), arXiv: 1009.0767.

    ADS  Google Scholar 

  42. H. Fu, L. Yan, A. D. Myers, A. Stockton, S. G. Djorgovski, G. Aldering, and J. A. Rich, Astrophys. J. 745, 67 (2012), arXiv: 1107.3564.

    ADS  Google Scholar 

  43. J. Q. Ge, C. Hu, J. M. Wang, J. M. Bai, and S. Zhang, Astrophys. J. Suppl. Ser. 201, 31 (2012), arXiv: 1208.2485.

    ADS  Google Scholar 

  44. L. Blecha, A. Loeb, and R. Narayan, Mon. Not. R. Astron. Soc. 429, 2594 (2013), arXiv: 1201.1904.

    ADS  Google Scholar 

  45. X. G. Zhang, and L. L. Feng, Mon. Not. R. Astron. Soc. 457, 3878 (2016).

    ADS  Google Scholar 

  46. J. M. Comerford, R. Nevin, A. Stemo, F. Müller-Sánchez, R. S. Barrows, M. C. Cooper, and J. A. Newman, Astrophys. J. 867, 66 (2018), arXiv: 1810.11543.

    ADS  Google Scholar 

  47. M. X.Wang, A. L. Luo, Y. H. Song, S. Y. Shen, S. Feng, L. L. Wang, Y. F. Wang, Y. B. Li, B. Du, W. Hou, Y. X. Guo, X. Kong, and J. N. Zhang, Mon. Not. R. Astron. Soc. 482, 1889 (2019), arXiv: 1810.07387.

    ADS  Google Scholar 

  48. M. X, Wang, and A. Luo, arXiv: 1904.06716.

  49. J. M. Comerford, D. Pooley, B. F. Gerke, and G. M. Madejski, Astrophys. J. 737, L19 (2011), arXiv: 1106.0746.

    ADS  Google Scholar 

  50. H. Fu, Z. Y. Zhang, R. J. Assef, A. Stockton, A. D. Myers, L. Yan, S. G. Djorgovski, J. M. Wrobel, and D. A. Riechers, Astrophys. J. 740, L44 (2011), arXiv: 1109.0008.

    ADS  Google Scholar 

  51. S. Frey, Z. Paragi, T. An, and K. Gabányi, Mon. Not. R. Astron. Soc. 425, 1185 (2012), arXiv: 1206.2167.

    ADS  Google Scholar 

  52. F. Müller-Sánchez, J. M. Comerford, R. Nevin, R. S. Barrows, M. C. Cooper, and J. E. Greene, Astrophys. J. 813, 103 (2015), arXiv: 1509.04291.

    ADS  Google Scholar 

  53. J. E. Greene, and L. C. Ho, Astrophys. J. 627, 721 (2005).

    ADS  Google Scholar 

  54. Y. Shen, X. Liu, J. E. Greene, and M. A. Strauss, Astrophys. J. 735, 48 (2011), arXiv: 1011.5246.

    ADS  Google Scholar 

  55. S. Satyapal, N. J. Secrest, C. Ricci, S. L. Ellison, B. Rothberg, L. Blecha, A. Constantin, M. Gliozzi, P. McNulty, and J. Ferguson, Astrophys. J. 848, 126 (2017), arXiv: 1707.03921.

    ADS  Google Scholar 

  56. X. Liu, T. J. W. Lazio, Y. Shen, and M. A. Strauss, Astrophys. J. 854, 169 (2018), arXiv: 1709.03561.

    ADS  Google Scholar 

  57. X. Liu, H. Guo, Y. Shen, J. E. Greene, and M. A. Strauss, Astrophys. J. 862, 29 (2018), arXiv: 1712.01866.

    ADS  Google Scholar 

  58. Q. Yu, Y. Lu, R. Mohayaee, and J. Colin, Astrophys. J. 738, 92 (2011), arXiv: 1105.1963.

    ADS  Google Scholar 

  59. V. Springel, Mon. Not. R. Astron. Soc. 364, 1105 (2005).

    ADS  Google Scholar 

  60. V. Springel, and L. Hernquist, Mon. Not. R. Astron. Soc. 339, 289 (2003).

    ADS  Google Scholar 

  61. K. Nagamine, V. Springel, and L. Hernquist, Mon. Not. R. Astron. Soc. 348, 435 (2004).

    ADS  Google Scholar 

  62. R. Thompson, K. Nagamine, J. Jaacks, and J. H. Choi, Astrophys. J. 780, 145 (2014), arXiv: 1301.0063.

    ADS  Google Scholar 

  63. F. Hoyle, and R. A. Lyttleton, Math. Proc. Camb. Phil. Soc. 35, 405 (1939).

    ADS  Google Scholar 

  64. H. Bondi, and F. Hoyle, Mon. Not. R. Astron. Soc. 104, 273 (1944).

    ADS  Google Scholar 

  65. H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).

    ADS  Google Scholar 

  66. C. M. Booth, and J. Schaye, Mon. Not. R. Astron. Soc. 398, 53 (2009), arXiv: 0904.2572.

    ADS  Google Scholar 

  67. P. H. Johansson, T. Naab, and A. Burkert, Astrophys. J. 690, 802 (2009), arXiv: 0802.0210.

    ADS  Google Scholar 

  68. P. Taylor, and C. Kobayashi, Mon. Not. R. Astron. Soc. 442, 2751 (2014), arXiv: 1405.4194.

    ADS  Google Scholar 

  69. J. Schaye, R. A. Crain, R. G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla Vecchia, C. S. Frenk, I. G. McCarthy, J. C. Helly, A. Jenkins, Y. M. Rosas-Guevara, S. D. M. White, M. Baes, C. M. Booth, P. Camps, J. F. Navarro, Y. Qu, A. Rahmati, T. Sawala, P. A. Thomas, and J. Trayford, Mon. Not. R. Astron. Soc. 446, 521 (2015), arXiv: 1407.7040.

    ADS  Google Scholar 

  70. V. Springel, T. Di Matteo, and L. Hernquist, Mon. Not. R. Astron. Soc. 361, 776 (2005).

    ADS  Google Scholar 

  71. T. Di Matteo, V. Springel, and L. Hernquist, Nature 433, 604 (2005).

    ADS  Google Scholar 

  72. X. X. Zhang, and Y. J. Lu, Sci. China-Phys. Mech. Astron. 60, 109511 (2017), arXiv: 1902.08332.

    ADS  Google Scholar 

  73. P. F. Hopkins, L. Hernquist, T. J. Cox, T. Di Matteo, P. Martini, B. Robertson, and V. Springel, Astrophys. J. 630, 705 (2005).

    ADS  Google Scholar 

  74. S. McAlpine, R. G. Bower, C. M. Harrison, R. A. Crain, M. Schaller, J. Schaye, and T. Theuns, Mon. Not. R. Astron. Soc. 468, 3395 (2017), arXiv: 1701.01122.

    ADS  Google Scholar 

  75. E. X. Wang, P. Taylor, C. Federrath, and C. Kobayashi, Mon. Not. R. Astron. Soc. 483, 4640 (2019), arXiv: 1812.08892.

    ADS  Google Scholar 

  76. V. Springel, and L. Hernquist, Astrophys. J. 622, L9 (2005).

    ADS  Google Scholar 

  77. M. Sparre, and V. Springel, Mon. Not. R. Astron. Soc. 470, 3946 (2017), arXiv: 1610.03850.

    ADS  Google Scholar 

  78. L. Hernquist, Astrophys. J. 356, 359 (1990).

    ADS  Google Scholar 

  79. H. J. Mo, S. Mao, and S. D. M. White, Mon. Not. R. Astron. Soc. 295, 319 (1998).

    ADS  Google Scholar 

  80. A. Marconi, and L. K. Hunt, Astrophys. J. 589, L21 (2003).

    ADS  Google Scholar 

  81. A. Alonso-Herrero, M. Pereira-Santaella, G. H. Rieke, and D. Rigopoulou, Astrophys. J. 744, 2 (2012), arXiv: 1109.1372.

    ADS  Google Scholar 

  82. K. Ichikawa, C. Ricci, Y. Ueda, F. E. Bauer, T. Kawamuro, M. J. Koss, K. Oh, D. J. Rosario, T. T. Shimizu, M. Stalevski, L. Fuller, C. Packham, and B. Trakhtenbrot, Astrophys. J. 870, 31 (2019), arXiv: 1811.02568.

    ADS  Google Scholar 

  83. P. R. Capelo, M. Dotti, M. Volonteri, L. Mayer, J. M. Bellovary, and S. Shen, Mon. Not. R. Astron. Soc. 469, 4437 (2017), arXiv: 1611.09244.

    ADS  Google Scholar 

  84. J. L. Sersic, Atlas de Galaxias Australes (Observatorio Astronomico, Cordoba, 1968).

    Google Scholar 

  85. K. C. Freeman, Astrophys. J. 160, 811 (1970).

    ADS  Google Scholar 

  86. B. Robertson, L. Hernquist, T. J. Cox, T. Di Matteo, P. F. Hopkins, P. Martini, and V. Springel, Astrophys. J. 641, 90 (2006).

    ADS  Google Scholar 

  87. B. Robertson, T. J. Cox, L. Hernquist, M. Franx, P. F. Hopkins, P. Martini, and V. Springel, Astrophys. J. 641, 21 (2006).

    ADS  Google Scholar 

  88. N. R. Stickley, and G. Canalizo, Astrophys. J. 747, 33 (2012), arXiv: 1201.4600.

    ADS  Google Scholar 

  89. L. Mayer, S. Kazantzidis, P. Madau, M. Colpi, T. Quinn, and J. Wadsley, Science 316, 1874 (2007), arXiv: 0706.1562.

    ADS  Google Scholar 

  90. Q. Yu, Mon. Not. R. Astron. Soc. 331, 935 (2002).

    ADS  Google Scholar 

  91. F. M. Khan, P. R. Capelo, L. Mayer, and P. Berczik, Astrophys. J. 868, 97 (2018), arXiv: 1807.11004.

    ADS  Google Scholar 

  92. G. Foreman, M. Volonteri, and M. Dotti, Astrophys. J. 693, 1554 (2009), arXiv: 0812.1569.

    ADS  Google Scholar 

  93. J. M. Comerford, K. Schluns, J. E. Greene, and R. J. Cool, Astrophys. J. 777, 64 (2013), arXiv: 1309.2284.

    ADS  Google Scholar 

  94. J. M. Comerford, D. Pooley, R. S. Barrows, J. E. Greene, N. L. Zakamska, G. M. Madejski, and M. C. Cooper, Astrophys. J. 806, 219 (2015), arXiv: 1504.01391.

    ADS  Google Scholar 

  95. L. Blecha, G. F. Snyder, S. Satyapal, and S. L. Ellison, Mon. Not. R. Astron. Soc. 478, 3056 (2018), arXiv: 1711.02094.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Yang or YouJun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Ge, J. & Lu, Y. Investigating the co-evolution of massive black holes in dual active galactic nuclei and their host galaxies via galaxy merger simulations. Sci. China Phys. Mech. Astron. 62, 129511 (2019). https://doi.org/10.1007/s11433-019-9442-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9442-9

Keywords

Navigation