Skip to main content
Log in

Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The stability of the linear chain structure of three α clusters for 12C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the inverse Hamiltonian and the Fourier spectral methods. Starting from a twisted three α initial configuration, it is found that the linear chain structure is stable when the rotational frequency is within the range of ~2.0-~2.5 MeV. Beyond this range, the final states are not stable against fission. By examining the density distributions and the occupation of single-particle levels, however, these fissions are found to arise from the occupation of unphysical continuum with large angular momenta. To properly remove these unphysical continuum, a damping function for the cranking term is introduced. Eventually, the stable linear chain structure could survive up to the rotational frequency ~3.5 MeV, but the fission still occurs when the rotational frequency approaches ~4.0 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr, and B. R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York, 1975).

    MATH  Google Scholar 

  2. B. M. Nyakó, J. R. Cresswell, P. D. Forsyth, D. Howe, P. J. Nolan, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson, N. J. Ward, and P. J. Twin, Phys. Rev. Lett. 52, 507 (1984).

    ADS  Google Scholar 

  3. P. J. Twin, B. M. Nyakó, A. H. Nelson, J. Simpson, M. A. Bentley, H. W. Cranmer-Gordon, P. D. Forsyth, D. Howe, A. R. Mokhtar, J. D. Morrison, J. F. Sharpey-Schafer, and G. Sletten, Phys. Rev. Lett. 57, 811 (1986).

    ADS  Google Scholar 

  4. A. Galindo-Uribarri, H. R. Andrews, G. C. Ball, T. E. Drake, V. P. Janzen, J. A. Kuehner, S. M. Mullins, L. Persson, D. Prévost, D. C. Radford, J. C. Waddington, D. Ward, and R. Wyss, Phys. Rev. Lett. 71, 231 (1993).

    ADS  Google Scholar 

  5. D. R. LaFosse, D. G. Sarantites, C. Baktash, P. F. Hua, B. Cederwall, P. Fallon, C. J. Gross, H. Q. Jin, M. Korolija, I. Y. Lee, A. O. Macchiavelli, M. R. Maier, W. Rathbun, D. W. Stracener, and T. R. Werner, Phys. Rev. Lett. 74, 5186 (1995).

    ADS  Google Scholar 

  6. A. Krasznahorkay, M. Hunyadi, M. N. Harakeh, M. Csatlós, T. Faestermann, A. Gollwitzer, G. Graw, J. Gulyás, D. Habs, R. Hertenberger, H. J. Maier, Z. Máté, D. Rudolph, P. Thirolf, J. Timár, and B. D. Valnion, Phys. Rev. Lett. 80, 2073 (1998).

    ADS  Google Scholar 

  7. H. Morinaga, Phys. Rev. 101, 254 (1956).

    ADS  Google Scholar 

  8. Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kat, Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29 (1980).

    ADS  Google Scholar 

  9. A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).

    ADS  Google Scholar 

  10. T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki, Phys. Rev. Lett. 112, 062501 (2014), arXiv: 1310.7684.

    ADS  Google Scholar 

  11. P. W. Zhao, N. Itagaki, and J. Meng, Phys. Rev. Lett. 115, 022501 (2015), arXiv: 1410.3986.

    ADS  Google Scholar 

  12. N. Itagaki, S. Okabe, K. Ikeda, and I. Tanihata, Phys. Rev. C 64, 014301 (2001).

    ADS  Google Scholar 

  13. M. Milin, and W. von Oertzen, Eur. Phys. J. A 14, 295 (2002).

    ADS  Google Scholar 

  14. W. von Oertzen, H. G. Bohlen, M. Milin, T. Kokalova, S. Thummerer, A. Tumino, R. Kalpakchieva, T. N. Massey, Y. Eisermann, G. Graw, T. Faestermann, R. Hertenberger, and H. F. Wirth, Eur. Phys. J. A 21, 193 (2004).

    ADS  Google Scholar 

  15. N. Itagaki, W. Oertzen, and S. Okabe, Phys. Rev. C 74, 067304 (2006).

    ADS  Google Scholar 

  16. T. Suhara, and Y. Kanada-En’yo, Phys. Rev. C 82, 044301 (2010), arXiv: 1004.4954.

    ADS  Google Scholar 

  17. N. Furutachi, and M. Kimura, Phys. Rev. C 83, 021303 (2011).

    ADS  Google Scholar 

  18. M. Freer, J. D. Malcolm, N. L. Achouri, N. I. Ashwood, D. W. Bardayan, S. M. Brown, W. N. Catford, K. A. Chipps, J. Cizewski, N. Curtis, K. L. Jones, T. Munoz-Britton, S. D. Pain, N. Soíc, C. Wheldon, G. L. Wilson, and V. A. Ziman, Phys. Rev. C 90, 054324 (2014).

    ADS  Google Scholar 

  19. T. Baba, Y. Chiba, and M. Kimura, Phys. Rev. C 90, 064319 (2014), arXiv: 1410.0789.

    ADS  Google Scholar 

  20. W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Phys. Rev. Lett. 113, 032506 (2014), arXiv: 1407.5414.

    ADS  Google Scholar 

  21. L. Liu, and P. W. Zhao, Chin. Phys. C 36, 818 (2012).

    ADS  Google Scholar 

  22. W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang, Phys. Rev. C 94, 014301 (2016), arXiv: 1602.08955.

    ADS  Google Scholar 

  23. A. Fritsch, S. Beceiro-Novo, D. Suzuki, W. Mittig, J. J. Kolata, T. Ahn, D. Bazin, F. D. Becchetti, B. Bucher, Z. Chajecki, X. Fang, M. Febbraro, A. M. Howard, Y. Kanada-En’yo, W. G. Lynch, A. J. Mitchell, M. Ojaruega, A. M. Rogers, A. Shore, T. Suhara, X. D. Tang, R. Torres-Isea, and H. Wang, Phys. Rev. C 93, 014321 (2016).

    ADS  Google Scholar 

  24. J. Li, Y. L. Ye, Z. H. Li, C. J. Lin, Q. T. Li, Y. C. Ge, J. L. Lou, Z. Y. Tian, W. Jiang, Z. H. Yang, J. Feng, P. J. Li, J. Chen, Q. Liu, H. L. Zang, B. Yang, Y. Zhang, Z. Q. Chen, Y. Liu, X. H. Sun, J. Ma, H. M. Jia, X. X. Xu, L. Yang, N. R. Ma, and L. J. Sun, Phys. Rev. C 95, 021303 (2017), arXiv: 1702.00617.

    ADS  Google Scholar 

  25. H. Yamaguchi, D. Kahl, S. Hayakawa, Y. Sakaguchi, K. Abe, T. Nakao, T. Suhara, N. Iwasa, A. Kim, D. H. Kim, S. M. Cha, M. S. Kwag, J. H. Lee, E. J. Lee, K. Y. Chae, Y. Wakabayashi, N. Imai, N. Kitamura, P. Lee, J. Y. Moon, K. B. Lee, C. Akers, H. S. Jung, N. N. Duy, L. H. Khiem, and C. S. Lee, Phys. Lett. B 766, 11 (2017), arXiv: 1610.06296.

    ADS  Google Scholar 

  26. T. Baba, and M. Kimura, Phys. Rev. C 95, 064318 (2017), arXiv: 1702.04874.

    ADS  Google Scholar 

  27. P. Zhao, and Z. Li, Int. J. Mod. Phys. E 27, 1830007 (2018).

    ADS  Google Scholar 

  28. J. M. Yao, N. Itagaki, and J. Meng, Phys. Rev. C 90, 054307 (2014).

    ADS  Google Scholar 

  29. P. Chevallier, F. Scheibling, G. Goldring, I. Plesser, and M. W. Sachs, Phys. Rev. 160, 827 (1967).

    ADS  Google Scholar 

  30. Y. Suzuki, H. Horiuchi, and K. Ikeda, Prog. Theor. Phys. 47, 1517 (1972).

    ADS  Google Scholar 

  31. H. Flocard, P. H. Heenen, S. J. Krieger, and M. S. Weiss, Prog. Theor. Phys. 72, 1000 (1984).

    ADS  Google Scholar 

  32. M. Bender, and P. H. Heenen, Nucl. Phys. A 713, 390 (2003).

    ADS  Google Scholar 

  33. T. Ichikawa, J. A. Maruhn, N. Itagaki, and S. Ohkubo, Phys. Rev. Lett. 107, 112501 (2011), arXiv: 1106.3443.

    ADS  Google Scholar 

  34. A. H. Wuosmaa, R. R. Betts, B. B. Back, M. Freer, B. G. Glagola, T. Happ, D. J. Henderson, P. Wilt, and I. G. Bearden, Phys. Rev. Lett. 68, 1295 (1992).

    ADS  Google Scholar 

  35. Y. Iwata, T. Ichikawa, N. Itagaki, J. A. Maruhn, and T. Otsuka, Phys. Rev. C 92, 011303 (2015), arXiv: 1409.8012.

    ADS  Google Scholar 

  36. T. Neff, and H. Feldmeier, Nucl. Phys. A 738, 357 (2004).

    ADS  Google Scholar 

  37. Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007).

    ADS  Google Scholar 

  38. W. von Oertzen, M. Freer, and Y. Kanadaenyo, Phys. Rep. 432, 43 (2006).

    ADS  Google Scholar 

  39. M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U. G. Meißner, Rev. Mod. Phys. 90, 035004 (2018), arXiv: 1705.06192.

    ADS  Google Scholar 

  40. A. S. Umar, J. A. Maruhn, N. Itagaki, and V. E. Oberacker, Phys. Rev. Lett. 104, 212503 (2010), arXiv: 1003.4711.

    ADS  Google Scholar 

  41. J. A. Maruhn, N. Loebl, N. Itagaki, and M. Kimura, Nucl. Phys. A 833, 1 (2010).

    ADS  Google Scholar 

  42. J. P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C 90, 054329 (2014), arXiv: 1406.2473.

    ADS  Google Scholar 

  43. K. T. R. Davies, H. Flocard, S. Krieger, and M. S. Weiss, Nucl. Phys. A 342, 111 (1980).

    ADS  Google Scholar 

  44. P. G. Reinhard, and R. Y. Cusson, Nucl. Phys. A 378, 418 (1982).

    ADS  Google Scholar 

  45. J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and A. S. Umar, Comput. Phys. Commun. 185, 2195 (2014), arXiv: 1310.5946.

    ADS  Google Scholar 

  46. C. Yu, and L. Guo, Sci. China-Phys. Mech. Astron. 60, 092011 (2017).

    ADS  Google Scholar 

  47. P. Ring, Prog. Particle Nucl. Phys. 37, 193 (1996).

    ADS  Google Scholar 

  48. D. Vretenar, A. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).

    ADS  Google Scholar 

  49. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Particle Nucl. Phys. 57, 470 (2006).

    ADS  Google Scholar 

  50. H. Liang, J. Meng, and S. G. Zhou, Phys. Rep. 570, 1 (2015), arXiv: 1411.6774.

    ADS  MathSciNet  Google Scholar 

  51. A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson, Phys. Rep. 322, 1 (1999).

    ADS  Google Scholar 

  52. J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Front. Phys. 8, 55 (2013), arXiv: 1301.1808.

    Google Scholar 

  53. J. Meng, Relativistic Density Functional for Nuclear Structure, International Review of Nuclear Physics Vol. 10 (World Scientific, Singapore, 2016).

    Google Scholar 

  54. H. J. Xia, H. Mei, and J. M. Yao, Sci. China-Phys. Mech. Astron. 60, 102021 (2017), arXiv: 1705.04904.

    ADS  Google Scholar 

  55. J. Peng, J. Meng, P. Ring, and S. Q. Zhang, Phys. Rev. C 78, 024313 (2008).

    ADS  Google Scholar 

  56. P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Lett. B 699, 181 (2011), arXiv: 1101.4547.

    ADS  Google Scholar 

  57. P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. Lett. 107, 122501 (2011), arXiv: 1105.3622.

    ADS  Google Scholar 

  58. P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Phys. Rev. C 85, 054310 (2012), arXiv: 1205.0867.

    ADS  Google Scholar 

  59. J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Phys. Rev. C 73, 037303 (2006).

    ADS  Google Scholar 

  60. J. Meng, and P. Zhao, Phys. Scr. 91, 053008 (2016), arXiv: 1604.02213.

    ADS  Google Scholar 

  61. P. W. Zhao, Phys. Lett. B 773, 1 (2017), arXiv: 1706.06127.

    ADS  Google Scholar 

  62. Y. Zhang, H. Liang, and J. Meng, Int. J. Mod. Phys. E 19, 55 (2010), arXiv: 0905.2505.

    ADS  Google Scholar 

  63. B. N. Lu, J. Zhao, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 89, 014323 (2014), arXiv: 1304.2513.

    ADS  Google Scholar 

  64. S. G. Zhou, Phys. Scr. 91, 063008 (2016), arXiv: 1605.00956.

    ADS  Google Scholar 

  65. K. G. Wilson, in New Phenomena in Subnuclear Physics, edited by A. Zichichi (Springer, Boston, 1977), pp. 69–142.

    Google Scholar 

  66. Y. Tanimura, K. Hagino, and H. Z. Liang, Prog. Theor. Exp. Phys. 2015, 073D01 (2015), arXiv: 1411.7804.

    Google Scholar 

  67. K. Hagino, and Y. Tanimura, Phys. Rev. C 82, 057301 (2010), arXiv: 1008.4995.

    ADS  Google Scholar 

  68. R. N. Hill, and C. Krauthauser, Phys. Rev. Lett. 72, 2151 (1994).

    ADS  Google Scholar 

  69. Z. X. Ren, S. Q. Zhang, and J. Meng, Phys. Rev. C 95, 024313 (2017), arXiv: 1612.09429.

    ADS  Google Scholar 

  70. W. Long, J. Meng, N. V. Giai, and S. G. Zhou, Phys. Rev. C 69, 034319 (2004).

    ADS  Google Scholar 

  71. G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 71, 024312 (2005).

    ADS  Google Scholar 

  72. T. Bürvenich, D. G. Madland, J. A. Maruhn, and P. G. Reinhard, Phys. Rev. C 65, 044308 (2002).

    ADS  Google Scholar 

  73. T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008), arXiv: 0809.1375.

    ADS  Google Scholar 

  74. P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010), arXiv: 1002.1789.

    ADS  Google Scholar 

  75. W. Koepf, and P. Ring, Nucl. Phys. A 493, 61 (1989).

    ADS  Google Scholar 

  76. W. Koepf, and P. Ring, Nucl. Phys. A 511, 279 (1990).

    ADS  Google Scholar 

  77. J. König, and P. Ring, Phys. Rev. Lett. 71, 3079 (1993).

    ADS  Google Scholar 

  78. H. Madokoro, J. Meng, M. Matsuzaki, and S. Yamaji, Phys. Rev. C 62, 061301 (2000).

    ADS  Google Scholar 

  79. P. Ring, and P. Schuck, The Nuclear Many-Body Problem (Springer Science & Business Media, New York, 2004).

    Google Scholar 

  80. S. Frauendorf, and J. Meng, Z. Phys. A-Hadrons Nuclei 356, 263 (1996).

    ADS  Google Scholar 

  81. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).

    ADS  Google Scholar 

  82. J. Shen, T. Tang, and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications (Springer, Dordrecht, 2011).

    MATH  Google Scholar 

  83. Y. Y. Wang, and Z. X. Ren, Sci. China-Phys. Mech. Astron. 61, 082012 (2018), arXiv: 1711.07799.

    ADS  MathSciNet  Google Scholar 

  84. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Zhang, S., Zhao, P. et al. Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice. Sci. China Phys. Mech. Astron. 62, 112062 (2019). https://doi.org/10.1007/s11433-019-9412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-9412-3

Key words

Navigation