Skip to main content
Log in

Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning

  • Article
  • Special Topic: Metasurfaces of Novel Designs and Functionalities
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Coding metasurfaces make it possible to manipulate electromagnetic (EM) waves digitally by means of several discrete particles. Hence, there have been rapid advances in this field recently. Here we propose a novel design of a broadband transmission-type coding metasurface, which is valid to both x- and y-polarized EM incidences from 8.1–12.5 GHz while satisfies the requirements of 1-bit coding without changing the polarization. Two types of multi-layer coding particles with different geometrical parameters are adopted to represent the digital states “0” and “1”, which are easily promoted to terahertz and optics through modifying the size scale. To verify the ability to manipulate the EM waves, we first adopt the coding metasurface to achieve broadband beam forming by converting spherical waves to plane waves and realize high-directivity pencil beam in far field with low side lobes. We further arrange the particles according to the coding sequence 010101… to steer two symmetrical beams in different directions controlled by frequencies with the maximum range of the scanning angle of 30°-50.5°. The good agreements between the simulated and measured results validate the proposed broadband coding metasurface, indicating its huge potential in communication and radar imaging systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sievenpiper, L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, IEEE Trans. Microwave Theor. Techn. 47, 2059 (1999).

    ADS  Google Scholar 

  2. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, IEEE Trans. Antennas Propagat. 51, 2641 (2003).

    ADS  Google Scholar 

  3. R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

  4. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Science 334, 333 (2011).

    ADS  Google Scholar 

  5. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, IEEE Antennas Propag. Mag. 54, 10 (2012).

    ADS  Google Scholar 

  6. H. T. Chen, A. J. Taylor, and N. Yu, Rep. Prog. Phys. 79, 076401 (2016).

    ADS  Google Scholar 

  7. H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, Opt. Mater. Express 4, 1717 (2014).

    ADS  Google Scholar 

  8. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, Adv. Mater. 29, 1606422 (2017).

    Google Scholar 

  9. H. X. Xu, H. Liu, X. Ling, Y. Sun, and F. Yuan, IEEE Trans. Antennas Propagat. 65, 7378 (2017).

    ADS  Google Scholar 

  10. H. X. Xu, G. Hu, L. Han, M. Jiang, Y. Huang, Y. Li, X. Yang, X. Ling, L. Chen, J. Zhao, and C. W. Qiu, Adv. Opt. Mater. 334, 1801479 (2018).

    Google Scholar 

  11. H. X. Xu, G. Hu, Y. Li, L. Han, J. Zhao, Y. Sun, F. Yuan, G. M. Wang, Z. H. Jiang, X. Ling, T. J. Cui, and C. W. Qiu, Light Sci. Appl. 8, 3 (2019).

    ADS  Google Scholar 

  12. S. Dong, Y. Zhang, H. Guo, J. Duan, F. Guan, Q. He, H. Zhao, L. Zhou, and S. Sun, Phys. Rev. Appl. 9, 014032 (2018).

    ADS  Google Scholar 

  13. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, Adv. Mater. 26, 5031 (2014).

    Google Scholar 

  14. Q. Wang, X. Zhang, Y. Xu, Z. Tian, J. Gu, W. Yue, S. Zhang, J. Han, and W. Zhang, Adv. Opt. Mater. 3, 779 (2015).

    Google Scholar 

  15. L. Cong, Y. K. Srivastava, H. Zhang, X. Zhang, J. Han, and R. Singh, Light Sci. Appl. 7, 28 (2018).

    ADS  Google Scholar 

  16. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, Nat. Mater. 11, 426 (2012).

    ADS  Google Scholar 

  17. S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. Hung Chu, J. W. Chen, S. H. Lu, J. Chen, B. Xu, C. H. Kuan, T. Li, S. Zhu, and D. P. Tsai, Nat. Commun. 8, 187 (2017).

    ADS  Google Scholar 

  18. G. Hu, X. Hong, K. Wang, J. Wu, H. X. Xu, W. Zhao, W. Liu, S. Zhang, F. Garcia-Vidal, B. Wang, P. Lu, and C. W. Qiu, Nat. Photon. 13, 467 (2019).

    ADS  Google Scholar 

  19. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).

    ADS  Google Scholar 

  20. H. Tang, Z. Chen, N. Tang, S. Li, Y. Shen, Y. Peng, X. Zhu, and J. Zang, Adv. Funct. Mater. 28, 1801127 (2018).

    Google Scholar 

  21. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, Light Sci. Appl. 3, e218 (2014).

    ADS  Google Scholar 

  22. X. Wan, M. Q. Qi, T. Y. Chen, and T. J. Cui, Sci. Rep. 6, 20663 (2016).

    ADS  Google Scholar 

  23. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, Light Sci. Appl. 5, e16076 (2016).

    Google Scholar 

  24. S. Liu, T. J. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J. Q. Gu, W. X. Tang, M. Qing Qi, J. G. Han, W. L. Zhang, X. Y. Zhou, and Q. Cheng, Adv. Sci. 3, 1600156 (2016).

    Google Scholar 

  25. R. Y. Wu, C. B. Shi, S. Liu, W. Wu, and T. J. Cui, Adv. Opt. Mater. 6, 1701236 (2018).

    Google Scholar 

  26. L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, and T. J. Cui, Light Sci. Appl. 4, e324 (2015).

    Google Scholar 

  27. M. Moccia, S. Liu, R. Y. Wu, G. Castaldi, A. Andreone, T. J. Cui, and V. Galdi, Adv. Opt. Mater. 5, 1700455 (2017).

    Google Scholar 

  28. S. Liu, A. Noor, L. L. Du, L. Zhang, Q. Xu, K. Luan, T. Q. Wang, Z. Tian, W. X. Tang, J. G. Han, W. L. Zhang, X. Y. Zhou, Q. Cheng, and T. J. Cui, ACS Photon. 3, 1968 (2016).

    Google Scholar 

  29. T. J. Cui, R. Y. Wu, W. Wu, C. B. Shi, and Y. B. Li, J. Phys. D-Appl. Phys. 50, 404002 (2017).

    Google Scholar 

  30. Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, and T. J. Cui, Adv. Opt. Mater. 5, 1700548 (2017).

    Google Scholar 

  31. T. J. Cui, S. Liu, and L. L. Li, Light Sci. Appl. 5, e16172 (2016).

    Google Scholar 

  32. K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, Opt. Express 25, 5571 (2017).

    ADS  Google Scholar 

  33. R. Y. Wu, L. Zhang, L. Bao, L. W. Wu, Q. Ma, G. D. Bai, H. T. Wu, and T. J. Cui, Adv. Opt. Mater. 7, 1801429 (2019).

    Google Scholar 

  34. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C. W. Qiu, and S. Zhang, Nat. Commun. 8, 197 (2017).

    ADS  Google Scholar 

  35. L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, and T. J. Cui, Phys. Rev. Appl. 11, 054051 (2019).

    ADS  Google Scholar 

  36. T. J. Cui, S. Liu, and L. Zhang, J. Mater. Chem. C 5, 3644 (2017).

    Google Scholar 

  37. T. J. Cui, J. Opt. 19, 084004 (2017).

    ADS  Google Scholar 

  38. T. J. Cui, Natl. Sci. Rev. 5, 134 (2018).

    Google Scholar 

  39. T. J. Cui, and S. Liu, Opt. Photon. News, 27, 59 (2016).

    Google Scholar 

  40. S. Yu, L. Li, and N. Kou, Antennas Wirel. Propag. Lett. 16, 1524 (2017).

    ADS  Google Scholar 

  41. B. Rahmati, H. R. Hassani, IEEE Trans. Antennas Propag. 63 174 (2014).

    ADS  Google Scholar 

  42. H. Cheng, Z. Liu, S. Chen, and J. Tian, Adv. Mater. 27, 5410 (2015).

    Google Scholar 

  43. S. Chen, Y. Zhang, Z. Li, H. Cheng, and J. Tian, Adv. Opt. Mater. 7, 1801477 (2019).

    Google Scholar 

  44. R. Y. Wu, Y. B. Li, W. Wu, C. B. Shi, and T. J. Cui, IEEE Trans. Antennas Propagat. 65, 3481 (2017).

    ADS  Google Scholar 

  45. A. M. Patel, and A. Grbic, IEEE Trans. Antennas Propagat. 59, 2087 (2011).

    ADS  Google Scholar 

  46. Y. B. Li, X. Wan, B. G. Cai, Q. Cheng, and T. J. Cui, Sci. Rep. 4, 6921 (2015).

    Google Scholar 

  47. Y. B. Li, R. Y. Wu, W. Wu, C. B. Shi, Q. Cheng, and T. J. Cui, Adv. Mater. Technol. 2, 1600196 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TieJun Cui.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0700201, 2017YFA0700202, and 2017YFA0700203), the National Natural Science Foundation of China (Grant Nos. 61631007, 61731010, 61735010, 61722106, 61701107, and 61701108), the Fund for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 61761136007), the Overseas Expertise Introduction Project for Discipline Innovation (Grant No. 111-2-05), the Fundamental Research Funds for the Central Universities, and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX17_0092), and the Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ-1815).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Bao, L., Wu, L. et al. Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning. Sci. China Phys. Mech. Astron. 63, 284211 (2020). https://doi.org/10.1007/s11433-019-1479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1479-3

En

Navigation