Skip to main content
Log in

Pulsar giant pulse: Coherent instability near light cylinder

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Giant pulses (GPs) are extremely bright individual pulses of radio pulsar. In microbursts of Crab pulsar, which is an active GP emitter, zebra-pattern-like spectral structures are observed, which are reminiscent of the “zebra bands” that are observed in type IV solar radio flares. However, band spacing linearly increases with the band center frequency of ∼5-30 GHz. In this study, we propose that the Crab pulsar GP can originate from the coherent instability of plasma near a light cylinder. Further, the growth of coherent instability can be attributed to the resonance observed between the cyclotron-resonant-excited wave and the background plasma oscillation. The particles can be injected into the closed-field line regions owing to magnetic reconnection near a light cylinder. These particles introduce a large amount of free energy that further causes cyclotron-resonant instability, which grows and amplifies radiative waves at frequencies close to the electron cyclotron harmonics that exhibit zebra-pattern-like spectral band structures. Further, these structures can be modulated by the resonance between the cyclotron-resonant-excited wave and the background plasma oscillation. In this scenario, the band structures of the Crab pulsar can be well fitted by a coherent instability model, where the plasma density of a light cylinder should be ~1013-15 cm−3, with an estimated gradient of >5:5 × 105 cm−4. This process may be accompanied by high-energy emissions. Similar phenomena are expected to be detected in other types of GP sources that have magnetic fields of ≃ 106 G in a light cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. D. Kuzmin, Astrophys. Space Sci. 308, 563 (2007).

    Article  ADS  Google Scholar 

  2. D. H. Staelin, and E. C. Reifenstein, Science 162, 1481 (1968).

    Article  ADS  Google Scholar 

  3. J. M. Cordes, N. D. R. Bhat, T. H. Hankins, M. A. McLaughlin, and J. Kern, Astrophys. J. 612, 375 (2004).

    Article  ADS  Google Scholar 

  4. S. W. Ellingson, T. E. Clarke, J. Craig, B. C. Hicks, T. J. W. Lazio, G. B. Taylor, T. L. Wilson, and C. N. Wolfe, Astrophys. J. 768, 136 (2013), arXiv: 1304.0812.

    Article  ADS  Google Scholar 

  5. T. H. Hankins, G. Jones, and J. A. Eilek, Astrophys. J. 802, 130 (2015), arXiv: 1502.00677.

    Article  ADS  Google Scholar 

  6. T. H. Hankins, J. S. Kern, J. C. Weatherall, and J. A. Eilek, Nature 422, 141 (2003).

    Article  ADS  Google Scholar 

  7. M. V. Popov, and B. Stappers, Astron. Astrophys. 470, 1003 (2007), arXiv: 0704.1197.

    Article  ADS  Google Scholar 

  8. K. H. Hesse, and R. Wielebinski, Astron. Astrophys. 31, 409 (1974).

    ADS  Google Scholar 

  9. R. T. Ritchings, Mon. Not. R. Astron. Soc. 176, 249 (1976).

    Article  ADS  Google Scholar 

  10. S. Johnston, and R. W. Romani, Astrophys. J. 590, L95 (2003).

    Google Scholar 

  11. V. A. Soglasnov, M. V. Popov, N. Bartel, W. Cannon, A. Y. Novikov, V. I. Kondratiev, and V. I. Altunin, Astrophys. J. 616, 439 (2004).

    Article  ADS  Google Scholar 

  12. A. A. Ershov, and A. D. Kuzmin, Astron. Lett. 29, 91 (2003).

    Article  ADS  Google Scholar 

  13. A. A. Ershov, and A. D. Kuzmin, Chin. J. Astron. Astrophys. 6, 30 (2006).

    Article  Google Scholar 

  14. J. C. Weatherall, Astrophys. J. 506, 341 (1998).

    Article  ADS  Google Scholar 

  15. J. A. Eilek, and T. H. Hankins, J. Plasma Phys. 82, 635820302 (2016), arXiv: 1604.02472.

    Article  Google Scholar 

  16. S. A. Petrova, Astron. Astrophys. 424, 227 (2004).

    Article  ADS  Google Scholar 

  17. T. H. Hankins, and J. A. Eilek, Astrophys. J. 670, 693 (2007), arXiv: 0708.2505.

    Article  ADS  Google Scholar 

  18. C. Slottje, Sol. Phys. 25, 210 (1972).

    Article  ADS  Google Scholar 

  19. M. Lyutikov, Mon. Not. R. Astron. Soc. 381, 1190 (2007), arXiv: 0705.2530.

    Article  ADS  Google Scholar 

  20. T. H. Hankins, J. A. Eilek, and G. Jones, Astrophys. J. 833, 47 (2016), arXiv: 1608.08881.

    Article  ADS  Google Scholar 

  21. H. C. Lambert, and B. J. Rickett, Astrophys. J. 517, 299 (1999).

    Article  ADS  Google Scholar 

  22. A. D. Kuzmin, and A. A. Ershov, Astron. Astrophys. 427, 575 (2004).

    Article  ADS  Google Scholar 

  23. B. C. Joshi, M. Kramer, A. G. Lyne, M. A. McLaughlin, and I. H. Stairs, in Young Neutron Stars and Their Environments, IAU Symposium vol. 218, edited by F. Camilo, and B. M. Gaensler (Astronomical Society of the Pacific, San Francisco, 2004), pp. 319–320.

  24. A. N. Kazantsev, V. A. Potapov, and G. B. Safronov, Astronom. Tsirkul. 1638, 1 (2017).

    ADS  Google Scholar 

  25. A. Jessner, M. V. Popov, V. I. Kondratiev, Y. Y. Kovalev, D. Graham, A. Zensus, V. A. Soglasnov, A. V. Bilous, and O. A. Moshkina, Astron. Astrophys. 524, A60 (2010), arXiv: 1008.3992.

    Article  ADS  Google Scholar 

  26. S. V. Kostyuk, V. I. Kondratiev, A. D. Kuzmin, M. V. Popov, and V. A. Soglasnov, Astron. Lett. 29, 387 (2003).

    Article  ADS  Google Scholar 

  27. S. Johnston, R. W. Romani, F. E. Marshall, and W. Zhang, Mon. Not. R. Astron. Soc. 355, 31 (2004).

    Article  ADS  Google Scholar 

  28. V. M. Malofeev, O. I. Malov, and N. B. Shchegoleva, Astron. Rep. 42, 241 (1998).

    ADS  Google Scholar 

  29. A. D. Kuzmin, and A. A. Ershov, Astron. Lett. 32, 583 (2006).

    Article  ADS  Google Scholar 

  30. T. V. Smirnova, Astron. Rep. 56, 430 (2012).

    Article  ADS  Google Scholar 

  31. J. W. Tsai, J. H. Simonetti, B. Akukwe, B. Bear, S. E. Cutchin, J. Dowell, J. D. Gough, J. Kanner, N. E. Kassim, F. K. Schinzel, P. Shawhan, G. B. Taylor, C. C. Yancey, L. Quezada, and M. Kavic, Astronom. J. 149, 65 (2015), arXiv: 1502.01282.

    Article  ADS  Google Scholar 

  32. N. A. Kazantsev, and V. A. Potapov, Astronom. Tsirkul. 1628, 1 (2015).

    ADS  Google Scholar 

  33. A. N. Kazantsev, and V. A. Potapov, Astron. Rep. 61, 747 (2017).

    Article  ADS  Google Scholar 

  34. H. S. Knight, M. Bailes, R. N. Manchester, and S. M. Ord, Astrophys. J. 625, 951 (2005).

    Article  ADS  Google Scholar 

  35. R. W. Romani, and S. Johnston, Astrophys. J. 557, L93 (2001).

    Google Scholar 

  36. A. D. Kuzmin, and B. Y. Losovsky, Astron. Lett. 28, 21 (2002).

    Article  ADS  Google Scholar 

  37. R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astrophys. J. 129, 1993 (2005).

    ADS  Google Scholar 

  38. D. Bhattacharya, R. A. M. J. Wijers, J. W. Hartman, and F. Verbunt, Astron. Astrophys. 254, 198 (1992).

    ADS  Google Scholar 

  39. E. P. J. van den Heuvel, in Access Symposium–International Astronomical Union, Volume 125 (The Origin and Evolution o f Neutron Stars), edited by D. J. Helfand, and J.–H. Huang (Cambridge University Press, Cambridge, 1987), pp. 393–404.

  40. P. Goldreich, and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  41. M. A. Ruderman, and P. G. Sutherland, Astrophys. J. 196, 51 (1975).

    Article  ADS  Google Scholar 

  42. J. Arons, in Neutron Stars and Pulsars, 40 Years After the Discovery, MPE Rep. 291, edited by W. Becker, and H. H. Huang (MPE, Garching, 2008).

  43. Y. N. Istomin, in Access Symposium–International Astronomical Union, Volume 218 (Young Neutrons Stars and their Environments), edited by F. Camilo, and B. M. Gaensier (Astronomical Society of the Pacific, Sydney, 2004), pp. 369–372.

  44. Y. E. Lyubarskii, Astron. Astrophys. 311, 172 (1996).

    ADS  Google Scholar 

  45. S. Zenitani, and M. Hoshino, Astrophys. J. 670, 702 (2007), arXiv: 0708.1000.

    Article  ADS  Google Scholar 

  46. Y. J. Du, G. J. Qiao, and W. Wang, Astrophys. J. 748, 84 (2012), arXiv: 1202.1096.

    Article  ADS  Google Scholar 

  47. R. Twiss, Aust. J. Phys. 11, 564 (1958).

    Article  ADS  Google Scholar 

  48. R. A. Treumann, Astron. Astrophys. Rev. 13, 229 (2006).

    Article  ADS  Google Scholar 

  49. A. Z. Kazbegi, G. Z. Machabeli, and G. I. Melikidze, in IAU Colloq. 128: Magnetospheric Structure and Emission Mechanics of Radio Pulsars, held in Lagow, Poland, 17–22 June 1990, edited by T. H. Hankins, J. M. Rankin, and J. A. Gil (Pedagogical University Press, Pedagogical, 1992).

  50. G. Bekefi, J. L. Hirshfield, and S. C. Brown, Phys. Rev. 122, 1037 (1961).

    Article  ADS  Google Scholar 

  51. C. S. Wu, Space Sci. Rev. 41, 215 (1985).

    Article  ADS  Google Scholar 

  52. C. S. Wu, C. B. Wang, P. H. Yoon, H. N. Zheng, and S. Wang, Astrophys. J. 575, 1094 (2002).

    Article  ADS  Google Scholar 

  53. V. L. Ginzburg, International Series ofMonographs in Electromagnetic Waves, 2nd ed. (Pergamon, Oxford, 1970).

    Google Scholar 

  54. D. B. Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017), arXiv: 1707.02009.

    Article  ADS  Google Scholar 

  55. V. V. Zheleznyakov, and E. Y. Zlotnik, Sol. Phys. 43, 431 (1975).

    Article  ADS  Google Scholar 

  56. R. M. Winglee, and G. A. Dulk, Astrophys. J. 307, 808 (1986).

    Article  ADS  Google Scholar 

  57. J. A. Hibschman, and J. Arons, Astrophys. J. 560, 871 (2001).

    Article  ADS  Google Scholar 

  58. G. Z. Machabeli, and V. V. Usov, Soviet Astron. Lett. 15, 393 (1989).

    ADS  Google Scholar 

  59. M. Lyutikov, and C. Thompson, Astrophys. J. 634, 1223 (2005).

    Article  ADS  Google Scholar 

  60. J. G. Lominadze, G. Z. Machabeli, and V. V. Usov, Astrophys. Space Sci. 90, 19(1983).

    Google Scholar 

  61. D. B. Melrose, R. G. Hewitt, and G. A. Dulk, J. Geophys. Res. 89, 897 (1984).

    Article  ADS  Google Scholar 

  62. M. N. Rosenbluth, in Lectures presented at the Trieste Seminar on Plasma Physics, held at the International Centre for Theoretical Physics, Trieste, October 5–31, 1964 (International Atomic Energy Agency, Vienna, 1965).

    Google Scholar 

  63. M. C. Allen, and D. B. Melrose, Publ. Astron. Soc. Aust. 4, 365 (1982).

    Article  ADS  Google Scholar 

  64. G. Machabeli, N. Chkheidze, and I. Malov, arXiv: 1805.04848.

  65. G. Gogoberidze, G. Z. Machabeli, D. B. Melrose, and Q. Luo, Mon. Not. R. Astron. Soc. 360, 669 (2005).

    Article  ADS  Google Scholar 

  66. Q. Luo, and D. B. Melrose, Mon. Not. R. Astron. Soc. 371, 1395 (2006).

    Article  ADS  Google Scholar 

  67. G. Machabeli, I. Malov, and G. Gogoberidze, arXiv: 1712.04935.

  68. Q. Luo, D. B. Melrose, and G. Z. Machabeli, Mon. Not. R. Astron. Soc. 268, 159 (1994).

    Article  ADS  Google Scholar 

  69. G. Cusumano, W. Hermsen, M. Kramer, L. Kuiper, O. Löhmer, E. Massaro, T. Mineo, L. Nicastro, and B. W. Stappers, Astron. Astrophys. 410, L9 (2003).

    Google Scholar 

  70. H. S. Knight, M. Bailes, R. N. Manchester, S. M. Ord, and B. A. Jacoby, Astrophys. J. 640, 941 (2006).

    Article  ADS  Google Scholar 

  71. N. Chkheidze, G. Machabeli, and Z. Osmanov, Astrophys. J. 730, 62 (2011), arXiv: 1012.3275.

    Article  ADS  Google Scholar 

  72. P. L. Pritchett, Phys. Fluids 27, 2393 (1984).

    Article  ADS  Google Scholar 

  73. K. Tsang, Phys. Fluids 27, 1659 (1984).

    Article  ADS  Google Scholar 

  74. M. Lyutikov, R. D. Blandford, and G. Machabeli, Mon. Not. R. Astron. Soc. 305, 338 (1999).

    Article  ADS  Google Scholar 

  75. B. Tan, C. Tan, Y. Zhang, H. Meszarosova, and M. Karlicky, Astrophys. J. 780, 129 (2014), arXiv: 1311.5305.

    Article  ADS  Google Scholar 

  76. R. Karuppusamy, B. W. Stappers, and M. Serylak, Astron. Astrophys. 525, A55 (2011), arXiv: 1010.5877.

    Article  ADS  Google Scholar 

  77. R. N. Manchester, in Neutron Stars and Pulsars. Astrophysics and Space Science Library 357, edited by W. Becker (Springer, Berlin, Heidelberg, 2009).

    Google Scholar 

  78. J. Miller, M. McLaughlin, N. Rea, E. Keaned, A. Lyned, and M. Kramerd, AIP Conf. Proc. 1357, 161 (2011).

    Article  ADS  Google Scholar 

  79. A. A. Abdo, M. Ackermann, M. Ajello, W. B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M. G. Baring, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R. D. Blandford, E. D. Bloom, E. Bonamente, A. W. Borgland, J. Bregeon, A. Brez, M. Brigida, P. Bruel, T. H. Burnett, G. A. Caliandro, R. A. Cameron, F. Camilo, P. A. Caraveo, J. M. Casandjian, C. Cecchi, O. elik, A. Chekhtman, C. C. Cheung, J. Chiang, S. Ciprini, R. Claus, I. Cognard, J. Cohen–Tanugi, L. R. Cominsky, J. Conrad, C. D. Dermer, A. de Angelis, A. de Luca, F. de Palma, S. W. Digel, E. do Couto e Silva, P. S. Drell, R. Dubois, D. Dumora, C. Espinoza, C. Farnier, C. Favuzzi, S. J. Fegan, E. C. Ferrara, W. B. Focke, M. Frailis, P. C. C. Freire, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, G. Giavitto, B. Giebels, N. Giglietto, F. Giordano, T. Glanzman, G. Godfrey, I. A. Grenier, M. H. Grondin, J. E. Grove, L. Guillemot, S. Guiriec, Y. Hanabata, A. K. Harding, M. Hayashida, E. Hays, R. E. Hughes, G. Jcohannesson, A. S. Johnson, R. P. Johnson, T. J. Johnson, W. N. Johnson, S. Johnston, T. Kamae, H. Katagiri, J. Kataoka, N. Kawai, M. Kerr, J. Knodlseder, M. L. Kocian, M. Kramer, F. Kuehn, M. Kuss, J. Lande, L. Latronico, S. H. Lee, M. Lemoine–Goumard, F. Longo, F. Loparco, B. Lott, M. N. Lovellette, P. Lubrano, A. G. Lyne, A. Makeev, M. Marelli, M. N. Mazziotta, J. E. McEnery, C. Meurer, P. F. Michelson, W. Mitthumsiri, T. Mizuno, A. A. Moiseev, C. Monte, M. E. Monzani, E. Moretti, A. Morselli, I. V. Moskalenko, S. Murgia, T. Nakamori, P. L. Nolan, J. P. Norris, A. Noutsos, E. Nuss, T. Ohsugi, N. Omodei, E. Orlando, J. F. Ormes, M. Ozaki, D. Paneque, J. H. Panetta, D. Parent, V. Pelassa, M. Pepe, M. Pesce–Rollins, M. Pierbattista, F. Piron, T. A. Porter, S. Rainco, R. Rando, P. S. Ray, M. Razzano, A. Reimer, O. Reimer, T. Reposeur, S. Ritz, L. S. Rochester, A. Y. Rodriguez, R. W. Romani, M. Roth, F. Ryde, H. F. W. Sadrozinski, D. Sanchez, A. Sander, P. M. S. Parkinson, J. D. Scargle, C. Sgrto, E. J. Siskind, D. A. Smith, P. D. Smith, G. Spandre, P. Spinelli, B. W. Stappers, M. S. Strickman, D. J. Suson, H. Tajima, H. Takahashi, T. Tanaka, J. B. Thayer, J. G. Thayer, G. Theureau, D. J. Thompson, S. E. Thorsett, L. Tibaldo, D. F. Torres, G. Tosti, A. Tramacere, Y. Uchiyama, T. L. Usher, A. Van Etten, V. Vasileiou, N. Vilchez, V. Vitale, A. P. Waite, E. Wallace, P. Wang, K. Watters, P. Weltevrede, B. L. Winer, K. S. Wood, T. Ylinen, and M. Ziegler, Astrophys. J. 708, 1254 (2010), arXiv: 0911.2412.

    Article  ADS  Google Scholar 

  80. T. J. Johnson, C. Venter, A. K. Harding, L. Guillemot, D. A. Smith, M. Kramer, O. (Jelik, P. R. den Hartog, E. C. Ferrara, X. Hou, J. Lande, and P. S. Ray, Astrophys. J. Suppl. Ser. 213, 6 (2014), arXiv: 1404.2264.

    Article  ADS  Google Scholar 

  81. R. N. Manchester, L. Staveley–Smith, and M. J. Kesteven, Astrophys. J. 411, 756 (1993).

    Article  ADS  Google Scholar 

  82. R. N. Manchester, AIP Conf. Proc. 937, 134 (2007).

    Article  ADS  Google Scholar 

  83. B. D. Metzger, E. Berger, and B. Margalit, Astrophys. J. 841, 14 (2017), arXiv: 1701.02370.

    Article  ADS  Google Scholar 

  84. U. L. Pen, and L. Connor, Astrophys. J. 807, 179 (2015), arXiv: 1501.01341.

    Article  ADS  Google Scholar 

  85. D. Michilli, A. Seymour, J. W. T. Hessels, L. G. Spitler, V. Gajjar, A. M. Archibald, G. C. Bower, S. Chatterjee, J. M. Cordes, K. Gourdji, G. H. Heald, V. M. Kaspi, C. J. Law, C. Sobey, E. A. K. Adams, C. G. Bassa, S. Bogdanov, C. Brinkman, P. Demorest, F. Fernandez, G. Hellbourg, T. J. W. Lazio, R. S. Lynch, N. Maddox, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, P. Scholz, A. P. V. Siemion, S. P. Tendulkar, P. Van Rooy, R. S. Wharton, and D. Whitlow, Nature 553, 182 (2018), arXiv: 1801.03965.

    Article  ADS  Google Scholar 

  86. V. Gajjar, A. P. V. Siemion, D. C. Price, C. J. Law, D. Michilli, J. W. T. Hessels, S. Chatterjee, A. M. Archibald, G. C. Bower, C. Brinkman, S. Burke–Spolaor, J. M. Cordes, S. Croft, J. E. Enriquez, G. Foster, N. Gizani, G. Hellbourg, H. Isaacson, V. M. Kaspi, T. J. W. Lazio, M. Lebofsky, R. S. Lynch, D. MacMahon, M. A. McLaughlin, S. M. Ransom, P. Scholz, A. Seymour, L. G. Spitler, S. P. Tendulkar, D. Werthimer, and Y. G. Zhang, Astrophys. J. 863, 2 (2018), arXiv: 1804.04101.

    Article  ADS  Google Scholar 

  87. S. Chatterjee, C. J. Law, R. S. Wharton, S. Burke–Spolaor, J. W. T. Hessels, G. C. Bower, J. M. Cordes, S. P. Tendulkar, C. G. Bassa, P. Demorest, B. J. Butler, A. Seymour, P. Scholz, M. W. Abruzzo, S. Bogdanov, V. M. Kaspi, A. Keimpema, T. J. W. Lazio, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, M. Rupen, L. G. Spitler, and H. J. van Langevelde, Nature 541, 58 (2017), arXiv: 1701.01098.

    Article  ADS  Google Scholar 

  88. R. Luo, K. Lee, D. R. Lorimer, and B. Zhang, Mon. Not. R. Astron. Soc. 481, 2320 (2018), arXiv: 1808.09929.

    Article  ADS  Google Scholar 

  89. W. Wang, R. Luo, H. Yue, X. Chen, K. Lee, and R. Xu, Astrophys. J. 852, 140 (2018), arXiv: 1710.00541.

    Article  ADS  Google Scholar 

  90. N. D. R. Bhat, J. M. Cordes, F. Camilo, D. J. Nice, and D. R. Lorimer, Astrophys. J. 605, 759 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiYang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, J., Zhang, S. et al. Pulsar giant pulse: Coherent instability near light cylinder. Sci. China Phys. Mech. Astron. 62, 979511 (2019). https://doi.org/10.1007/s11433-018-9334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-018-9334-y

Keywords

Navigation