Skip to main content
Log in

NLO QCD corrections to B c(B*c) production around the Z pole at an e + e - collider

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The production of B c and B*c mesons at a Z-factory (an e + e - collider operating at energies around the Z pole) is calculated up to the next-to-leading order (NLO) QCD accuracy. The results show that the dependence of the total cross sections on the renormalization scale μ is suppressed by the corrections, and the NLO corrections enhance the total cross sections of B c by 52% and of B*c by 33% when the renormalization scale is taken at μ = 2m b . To observe the various behaviors of the production of the mesons B c and B*c, such as the differential cross section vs. the out-going angle, the forward-backward asymmetry, and the distribution vs. the energy fraction z up to NLO QCD accuracy as well as the relevant K-factor (NLO to LO) for the production, are calculated, and it is pointed out that some of the observables obtained in the present work may be used as a specific precision test of the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. J. Eichten, and C. Quigg, Phys. Rev. D 49, 5845 (1994).

    Article  ADS  Google Scholar 

  2. G. T. Bodwin, E. Braaten, and G. P. Lepage, Phys. Rev. D 51, 1125 (1995) Erratum-ibid. 55, 5853 (1997).

    Article  ADS  Google Scholar 

  3. C. H. Chang, and Y. Q. Chen, Phys. Rev. D 49, 3399 (1994)

    Article  ADS  Google Scholar 

  4. C. H. Chang, Y. Q. Chen, G. L. Wang, and H. S. Zong, Phys. Rev. D 65, 014017 (2001)

    Article  ADS  Google Scholar 

  5. A. Abd El-Hady, J. H. Mu˜noz, and J. P. Vary, Phys. Rev. D 62, 014019 (2000)

    Article  ADS  Google Scholar 

  6. D. Ebert, R. N. Faustov, and V. O. Galkin, Eur. Phys. J. C 32, 29 (2003)

    Article  ADS  Google Scholar 

  7. D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 68, 094020 (2003)

    Article  ADS  Google Scholar 

  8. C. H. Chang, H. F. Fu, G. L. Wang, and J. M. Zhang, Sci. China-Phys. Mech. Astron. 58, 071001 (2015)

    Article  Google Scholar 

  9. Z. Rui, W. F. Wang, G. Wang, L. Song, and C. D. Lu, Eur. Phys. J. C 75, 293 (2015).

    Article  ADS  Google Scholar 

  10. N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt, G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vairo, A. Andronic, R. Arnaldi, P. Artoisenet, G. Bali, A. Bertolin, D. Bettoni, J. Brodzicka, G. E. Bruno, A. Caldwell, J. Catmore, C. H. Chang, K. T. Chao, E. Chudakov, P. Cortese, P. Crochet, A. Drutskoy, U. Ellwanger, P. Faccioli, A. Gabareen Mokhtar, X. Garcia i Tormo, C. Hanhart, F. A. Harris, D. M. Kaplan, S. R. Klein, H. Kowalski, J. P. Lansberg, E. Levichev, V. Lombardo, C. Lourenço, F. Maltoni, A. Mocsy, R. Mussa, F. S. Navarra, M. Negrini, M. Nielsen, S. L. Olsen, P. Pakhlov, G. Pakhlova, K. Peters, A. D. Polosa, W. Qian, J. W. Qiu, G. Rong, M. A. Sanchis-Lozano, E. Scomparin, P. Senger, F. Simon, S. Stracka, Y. Sumino, M. Voloshin, C. Weiss, H. K. Wöhri, and C. Z. Yuan, Eur. Phys. J. C 71, 1534 (2011).

    Article  ADS  Google Scholar 

  11. N. Brambilla, M. Krämer, R. Mussa, A. Vairo, G. Bali, G. T. Bodwin, E. Braaten, E. Eichten, S. Eidelman, S. Godfrey, A. Hoang, M. Jamin, D. Kharzeev, M. P. Lombardo, C. Lourenço, A. B. Meyer, V. Papadimitriou, C. Patrignani, M. Rosati, M. A. Sanchis-Lozano, H. Satz, J. Soto, D. Z. Besson, D. Bettoni, A. Böhrer, S. Boogert, C. H. Chang, P. Cooper, P. Crochet, S. Datta, C. Davies, A. Deandrea, R. Faustov, T. Ferguson, R. Galik, F. A. Harris, O. Iouchtchenko, O. Kaczmarek, F. Karsch, M. Kienzle, V. V. Kiselev, S. R. Klein, P. Kroll, A. Kronfeld, Y. P. Kuang, V. Laporta, J. Lee, A. Leibovich, J. P. Ma, P. Mackenzie, L. Maiani, M. L. Mangano, A. Meyer, X. H. Mo, C. Morningstar, A. Nairz, J. Napolitano, S. Olsen, A. Penin, P. Petreczky, F. Piccinini, A. Pineda, A. D. Polosa, L. Ramello, R. Rapp, J. M. Richard, V. Riquer, S. Ricciardi, E. Robutti, O. Schneider, E. Scomparin, J. Simone, T. Skwarnicki, G. Stancari, I. W. Stewart, Yu. Sumino, T. Teubner, J. Tseng, R. Vogt, P. Wang, B. Yabsley, C. Z. Yuan, F. Zantow, Z. G. Zhao, A. Zieminski, arXiv: hep-ph/0412158.

  12. F. Abe, et al. (CDF Collaboration), Phys. Rev. Lett. 81, 2432 (1998); Phys. Rev. D 58, 112004 (1998).

    Google Scholar 

  13. C. H. Chang, and Y. Q. Chen, Phys. Rev. D 46, 3845 (1992); Erratum, Phys. Rev. D 50, 6013 (1994); Phys. Lett. B 284, 127 (1992).

    Article  Google Scholar 

  14. P. Abreu, et al. (DELPHI Collaboration), Phys. Lett. B 398, 207 (1997)

    Article  ADS  Google Scholar 

  15. R. Barate, et al. (ALEPH Collaboration), Phys. Lett. B 402, 213 (1997)

    Article  ADS  Google Scholar 

  16. K. Ackerstaff, et al. (OPAL Collaboration), Phys. Lett. B 420, 157 (1998).

    Article  ADS  Google Scholar 

  17. X. C. Zheng, C. H. Chang, and Z. Pan, Phys. Rev. D 93, 034019 (2016).

    Article  ADS  Google Scholar 

  18. M. Beneke, and V. A. Smirnov, Nucl. Phys. B 522, 321 (1998).

    Article  ADS  Google Scholar 

  19. J. G. Körner, D. Kreimer, and K. Schilcher, Z. Phys. C 54, 503 (1992).

    Article  ADS  Google Scholar 

  20. T. Kinoshita, J. Math. Phys. 3, 650 (1962).

    Article  ADS  Google Scholar 

  21. S. Dittmaier, Nucl. Phys. B 675, 447 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. G. Grammer, and D. R. Yennie, Phys. Rev. D 8, 4332 (1973).

    Article  ADS  Google Scholar 

  23. B. W. Harris, and J. F. Owens, Phys. Rev. D 65, 094032 (2002).

    Article  ADS  Google Scholar 

  24. A. Bassetto, M. Ciafaloni, and G. Marchesini, Phys. Rep. 100, 201 (1983).

    Article  ADS  Google Scholar 

  25. A. Denner, Fortschr. Phys. 41, 307 (1993).

    Google Scholar 

  26. K. A. Olive, et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  27. T. Hahn, Comp. Phys. Commun. 140, 418 (2001).

    Article  ADS  Google Scholar 

  28. R. Mertig, M. Böhm, and A. Denner, Comp. Phys. Commun. 64, 345 (1991).

    Article  ADS  Google Scholar 

  29. F. Feng, and R. Mertig, arXiv: 1212.3522.

  30. F. Feng, Comp. Phys. Commun. 183, 2158 (2012).

    Article  ADS  Google Scholar 

  31. A. V. Smirnov, J. High Energ. Phys. 2008, 107 (2008).

    Article  ADS  Google Scholar 

  32. T. Hahn, and M. Pérez-Victoria, Comp. Phys. Commun. 118, 153 (1999).

    Article  ADS  Google Scholar 

  33. G. P. Lepage, J. Comp. Phys. 27, 192 (1978).

    Article  ADS  Google Scholar 

  34. C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  35. C. F. Qiao, L. P. Sun, and R. L. Zhu, J. High Energ. Phys. 2011, 131 (2011).

    Article  Google Scholar 

  36. J. Jiang, L. B. Chen, and C. F. Qiao, Phys. Rev. D 91, 034033 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChaoHsi Chang or TaiFu Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Chang, C., Feng, T. et al. NLO QCD corrections to B c(B*c) production around the Z pole at an e + e - collider. Sci. China Phys. Mech. Astron. 61, 031012 (2018). https://doi.org/10.1007/s11433-017-9121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9121-3

Keywords

Navigation