Skip to main content
Log in

Using coupling slabs to tailor surface-acoustic-wave band structures in phononic crystals consisting of pillars attached to elastic substrates

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The propagation of surface acoustic waves (SAWs) in two-dimensional phononic crystals (PnCs) with and without coupling-enhancement slabs was theoretically investigated using a three-dimensional finite element method. Different piezoelectric substrates, for example, lithium niobate (LiNbO3), gallium nitride (GaN), and aluminium nitride (AlN), were taken into account. Compared to the PnCs without coupling-enhancement slabs, the coupling between each pillar and its nearest neighbor was largely enhanced in the presence of slabs. The bandwidth of the first directional band gap increased markedly compared with its initial value for the PnCs without a slab (within square symmetry). In addition, with increasing thicknesses of the slabs bonded between neighboring pillars, the first directional band-gap and second directional band gap of the PnCs tend to merge. Therefore, the structure with coupling-enhancement slabs can be used as an excellent electrical band elimination filter for most electro-SAW devices, offering a new strategy to realize chip-scale applications in electroacoustic signal processing, optoacoustic modulation, and even SAW microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. M. Sigalas, and E. N. Economou, J. Sound Vib. 158, 377 (1992).

    Article  ADS  Google Scholar 

  2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).

    Article  ADS  Google Scholar 

  3. R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares, and F. Meseguer, Nature 378, 241 (1995).

    Article  ADS  Google Scholar 

  4. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  ADS  Google Scholar 

  5. S. John, Phys. Rev. Lett. 58, 2486 (1987).

    Article  ADS  Google Scholar 

  6. T. Gorishnyy, M. Maldovan, C. Ullal, and E. Thomas, Phys. World 18, 24 (2005).

    Article  Google Scholar 

  7. M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. B 49, 2313 (1994).

    Article  ADS  Google Scholar 

  8. J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, M. S. Kushwaha, and P. Halevi, J. Phys.-Condens. Matter 6, 8759 (1994).

    Article  ADS  Google Scholar 

  9. M. S. Kushwaha, and B. Djafari-Rouhani, J. Sound Vib. 218, 697 (1998).

    Article  ADS  Google Scholar 

  10. M. Torres, F. R. Montero de Espinosa, D. García-Pablos, and N. García, Phys. Rev. Lett. 82, 3054 (1999).

    Article  ADS  Google Scholar 

  11. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, Appl. Phys. Lett. 94, 051906 (2009).

    Article  ADS  Google Scholar 

  12. X. Zhang, T. Jackson, E. Lafond, P. Deymier, and J. Vasseur, Appl. Phys. Lett. 88, 041911 (2006).

    Article  ADS  Google Scholar 

  13. Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, Phys. Rev. E 69, 046608 (2004).

    Article  ADS  Google Scholar 

  14. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).

    Article  ADS  Google Scholar 

  15. J. H. Sun, and T. T. Wu, Phys. Rev. B 74, 174305 (2006).

    Article  ADS  Google Scholar 

  16. P. H. Otsuka, K. Nanri, O. Matsuda, M. Tomoda, D. M. Profunser, I. A. Veres, S. Danworaphong, A. Khelif, S. Benchabane, V. Laude, and O. B. Wright, Sci. Rep. 3, 3351 (2013).

    Article  ADS  Google Scholar 

  17. X. Zhang, and Z. Liu, Appl. Phys. Lett. 85, 341 (2004).

    Article  ADS  Google Scholar 

  18. M. H. Lu, C. Zhang, L. Feng, J. Zhao, Y. F. Chen, Y. W. Mao, J. Zi, Y. Y. Zhu, S. N. Zhu, and N. B. Ming, Nat. Mater. 6, 744 (2007).

    Article  ADS  Google Scholar 

  19. X. Hu, Y. Shen, X. Liu, R. Fu, and J. Zi, Phys. Rev. E 69, 030201 (2004).

    Article  ADS  Google Scholar 

  20. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 93, 024301 (2004).

    Article  ADS  Google Scholar 

  21. T. T. Wu, Y. T. Chen, J. H. Sun, S. C. S. Lin, and T. J. Huang, Appl. Phys. Lett. 98, 171911 (2011).

    Article  ADS  Google Scholar 

  22. L. S. Chen, C. H. Kuo, and Z. Ye, Appl. Phys. Lett. 85, 1072 (2004).

    Article  ADS  Google Scholar 

  23. J. Shi, S. C. S. Lin, and T. J. Huang, Appl. Phys. Lett. 92, 111901 (2008).

    Article  ADS  Google Scholar 

  24. F. Liu, Y. Lai, X. Huang, and C. T. Chan, Phys. Rev. B 84, 224113 (2011), arXiv: 1106.4186.

    Article  ADS  Google Scholar 

  25. F. Liu, X. Huang, and C. T. Chan, Appl. Phys. Lett. 100, 071911 (2012).

    Article  ADS  Google Scholar 

  26. S. Y. Yu, Q. Wang, L. Y. Zheng, C. He, X. P. Liu, M. H. Lu, and Y. F. Chen, Appl. Phys. Lett. 106, 151906 (2015).

    Article  ADS  Google Scholar 

  27. L. Y. Zheng, Y. Wu, X. Ni, Z. G. Chen, M. H. Lu, and Y. F. Chen, Appl. Phys. Lett. 104, 161904 (2014).

    Article  ADS  Google Scholar 

  28. B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, Nat. Mater. 9, 989 (2010).

    Article  ADS  Google Scholar 

  29. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).

    Article  ADS  Google Scholar 

  30. Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and B. Zhang, Phys. Rev. Lett. 114, 114301 (2015), arXiv: 1411.7100.

    Article  ADS  Google Scholar 

  31. A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, Nat. Commun. 6, 8260 (2015).

    Article  ADS  Google Scholar 

  32. C. He, Z. Li, X. Ni, X. C. Sun, S. Y. Yu, M. H. Lu, X. P. Liu, and Y. F. Chen, Appl. Phys. Lett. 108, 031904 (2016).

    Article  ADS  Google Scholar 

  33. L. Rayleigh, Proc. London Math. Soc. 17, 4 (1885).

    Article  MathSciNet  Google Scholar 

  34. R. M. White, and F. W. Voltmer, Appl. Phys. Lett. 7, 314 (1965).

    Article  ADS  Google Scholar 

  35. C. C. W. Ruppel, L. Reindl, and R. Weigel, IEEE Microw. 3, 65 (2002).

    Article  Google Scholar 

  36. J. W. Grate, and M. Klusty, Anal. Chem. 63, 1719 (1991).

    Article  Google Scholar 

  37. A. J. Ricco, C. Xu, R. M. Crooks, and R. E. Allred, in Chemically sensitive interfaces on SAW devices: Proceedings of Americal Chemically Society National Meeting (Sandia National Labs, Washington, 1993).

    Google Scholar 

  38. S. C. S. Lin, X. Mao, and T. J. Huang, Lab Chip 12, 2766 (2012).

    Article  Google Scholar 

  39. A. Polh, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 47, 317 (2000).

    Article  Google Scholar 

  40. T. M. A. Gronewold, Anal. Chim. Acta 603, 119 (2007).

    Article  Google Scholar 

  41. K. Länge, G. Blaess, A. Voigt, R. Götzen, and M. Rapp, Biosens. Bioelectron. 22, 227 (2006).

    Article  Google Scholar 

  42. A. Renaudin, V. Chabot, E. Grondin, V. Aimez, and P. G. Charette, Lab Chip 10, 111 (2010).

    Article  Google Scholar 

  43. J. Lee, Y. S. Choi, Y. Lee, H. J. Lee, J. N. Lee, S. K. Kim, K. Y. Han, E. C. Cho, J. C. Park, and S. S. Lee, Anal. Chem. 83, 8629 (2011).

    Article  Google Scholar 

  44. S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, and V. Laude, Phys. Rev. E 73, 065601 (2006).

    Article  ADS  Google Scholar 

  45. M. Oudich, M. B. Assouar, and Z. Hou, Appl. Phys. Lett. 97, 193503 (2010).

    Article  ADS  Google Scholar 

  46. J. C. Hsu, and T. T. Wu, Appl. Phys. Lett. 90, 201904 (2007).

    Article  ADS  Google Scholar 

  47. A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, Phys. Rev. B 81, 214303 (2010).

    Article  ADS  Google Scholar 

  48. Y. Achaoui, A. Khelif, S. Benchabane, L. Robert, and V. Laude, Phys. Rev. B 83, 104201 (2011).

    Article  ADS  Google Scholar 

  49. S. Yankin, A. Talbi, Y. Du, J. C. Gerbedoen, V. Preobrazhensky, P. Pernod, and O. B. Matar, J. Appl. Phys. 115, 244508 (2014).

    Article  ADS  Google Scholar 

  50. B. Bonello, L. Belliard, J. Pierre, J. O. Vasseur, B. Perrin, and O. Boyko, Phys. Rev. B 82, 104109 (2010).

    Article  ADS  Google Scholar 

  51. T. T. Wu, W. S. Wang, J. H. Sun, J. C. Hsu, and Y. Y. Chen, Appl. Phys. Lett. 94, 101913 (2009).

    Article  ADS  Google Scholar 

  52. M. Sigalas, and E. N. Economou, Solid State Commun. 86, 141 (1993).

    Article  ADS  Google Scholar 

  53. D. Caballero, J. Sánchez-Dehesa, C. Rubio, R. Mártinez-Sala, J. V. Sánchez-Pérez, F. Meseguer, and J. Llinares, Phys. Rev. E 60, R6316 (1999).

    Article  ADS  Google Scholar 

  54. F. L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C. C. Chen, and V. Laude, J. Appl. Phys. 101, 044903 (2007).

    Article  ADS  Google Scholar 

  55. J. V. Sánchez-Pérez, D. Caballero, R. Mártinez-Sala, C. Rubio, J. Sánchez-Dehesa, F. Meseguer, J. Llinares, and F. Gálvez, Phys. Rev. Lett. 80, 5325 (1998).

    Article  ADS  Google Scholar 

  56. T. Miyashita, Jpn. J. Appl. Phys. 41, 3170 (2002).

    Article  ADS  Google Scholar 

  57. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, Phys. Rev. B 68, 214301 (2003).

    Article  ADS  Google Scholar 

  58. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science 289, 1734 (2000).

    Article  ADS  Google Scholar 

  59. M. Jazbinšek, and M. Zgonik, Appl. Phys. B-Lasers Opt. 74, 407 (2002).

    Article  ADS  Google Scholar 

  60. G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, Phys. Rev. Lett. 93, 154302 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MingHui Lu or XiaoBo Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yu, S., Liu, F. et al. Using coupling slabs to tailor surface-acoustic-wave band structures in phononic crystals consisting of pillars attached to elastic substrates. Sci. China Phys. Mech. Astron. 60, 044311 (2017). https://doi.org/10.1007/s11433-016-0395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0395-6

Keywords

Navigation