Skip to main content
Log in

Recent progress on the mechanics of sharply bent DNA

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Despite extensive studies on the mechanics of DNA under external constrains, such as tension, torsion, and bending, several important aspects have remained poorly understood. One biologically important example is the mechanics of DNA under sharp bending conditions, which has been debated for a decade without thorough comprehension. The debate is about the interesting phenomenon raised from a series of different experiments: sharply bent DNA has a surprisingly high apparent bending flexibility that deviates from the canonical bending elasticity of DNA. This finding has motivated various theoretical models, which mainly incorporate the excitation of mechanical defects inside severely bent DNA molecules. Here, we review the recent progress on the understanding of the mechanics of sharply bent DNA and provide our view on this important question by interrogating the theoretical foundation of these experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Koen Schakenraad, Andreas S. Biebricher, … Paul van der Schoot

References

  1. J. D. Watson, and F. H. C. Crick, Nature 171, 737 (1953).

    Article  ADS  Google Scholar 

  2. T. J. Richmond, K. Luger, A. W. Mader, R. K. Richmond, and D. F. Sargent, Nature 389, 251 (1997).

    Article  ADS  Google Scholar 

  3. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, Nature 413, 748 (2001).

    Article  ADS  Google Scholar 

  4. S. Oehler, E. R. Eismann, H. Kramer, and B. Muller-Hill, EMBO J. 9, 973 (1990).

    Google Scholar 

  5. P. A. Rice, S. Yang, K. Mizuuchi, and H. A. Nash, Cell 87,1295 (1996).

    Article  Google Scholar 

  6. W. Gobush, H. Yamakawa, W. H. Stockmayer, and W. S. Magee, J. Chem. Phys. 57, 2839 (1972).

    Article  ADS  Google Scholar 

  7. J. F. Marko, and E. D. Siggia, Macromolecules 28, 8759 (1995).

    Article  ADS  Google Scholar 

  8. C. Bustamante, J. Marko, E. Siggia, and S. Smith, Science 265, 1599 (1994).

    Article  ADS  Google Scholar 

  9. J. Yan, R. Kawamura, and J. F. Marko, Phys. Rev. E 71,061905 (2005).

    Article  ADS  Google Scholar 

  10. P. A. Wiggins, T. van der Heijden, F. Moreno-Herrero, A. Spakowitz, R. Phillips, J. Widom, C. Dekker, and P. C. Nelson, Nat. Nanotech. 1, 137 (2006).

    Article  ADS  Google Scholar 

  11. M. Doi, and S. F. Edwards, The Theory of Polymer Dynamics (Oxford, Clarendon, 1986).

    Google Scholar 

  12. Y. Shi, S. He, and J. E. Hearst, J. Chem. Phys. 105, 714 (1996).

    Article  ADS  Google Scholar 

  13. C. Rivetti, M. Guthold, and C. Bustamante, J. Mol. Biol. 264, 919 (1996).

    Article  Google Scholar 

  14. F. Valle, M. Favre, P. De Los Rios, A. Rosa, and G. Dietler, Phys. Rev. Lett. 95, 158105 (2005).

    Article  ADS  Google Scholar 

  15. H. Jacobson, and W. H. Stockmayer, J. Chem. Phys. 18, 1600 (1950).

    Article  ADS  Google Scholar 

  16. J. C. Wang, and N. Davidson, J. Mol. Biol. 19, 469 (1966).

    Article  Google Scholar 

  17. M. D. Frank-Kamenetskii, A. V. Lukashin, V. V. Anshelevich, and A. V. Vologodskii, J. Biomol. Struct. Dyn. 2, 1005 (1985).

    Article  Google Scholar 

  18. S. D. Levene, and D. M. Crothers, J. Mol. Biol. 189, 61 (1986).

    Article  Google Scholar 

  19. P. J. Hagerman, and V. A. Ramadevi, J. Mol. Biol. 212, 351 (1990).

    Article  Google Scholar 

  20. A. J. Spakowitz, and Z. G. Wang, Macromolecules 37, 5814 (2004).

    Article  ADS  Google Scholar 

  21. J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. E 77, 011913 (2008).

    Article  ADS  Google Scholar 

  22. D. Shore, J. Langowski, and R. L. Baldwin, Proc. Natl. Acad. Sci. USA 78, 4833 (1981).

    Article  ADS  Google Scholar 

  23. D. Shore, and R. L. Baldwin, J. Mol. Biol. 170, 957 (1983).

    Article  Google Scholar 

  24. S. B. Smith, Y. Cui, and C. Bustamante, Science 271, 795 (1996).

    Article  ADS  Google Scholar 

  25. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay, and F. Caron, Science 271, 792 (1996).

    Article  ADS  Google Scholar 

  26. A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. van Boom, G. van der Marel, and A. Rich, Nature 282, 680 (1979).

    Article  ADS  Google Scholar 

  27. A. Rich, and S. Zhang, Nat. Rev. Genet. 4, 566 (2003).

    Article  Google Scholar 

  28. A. K. Mazur, and M. Maaloum, Phys. Rev. Lett. 112, 068104 (2014).

    Article  ADS  Google Scholar 

  29. T. E. Cloutier, and J. Widom, Mol. Cell 14, 355 (2004).

    Article  Google Scholar 

  30. R. Vafabakhsh, and T. Ha, Science 337, 1097 (2012).

    Article  ADS  Google Scholar 

  31. T. T. Le, and H. D. Kim, Nucl. Acids Res. 42, 10786 (2014).

    Article  Google Scholar 

  32. H. Shroff, B. M. Reinhard, M. Siu, H. Agarwal, A. Spakowitz, and J. Liphardt, Nano Lett. 5, 1509 (2005).

    Article  ADS  Google Scholar 

  33. Q. Du, C. Smith, N. Shiffeldrim, M. Vologodskaia, and A. V. Vologodskii, Proc. Natl. Acad. Sci. USA 102, 5397 (2005).

    Article  ADS  Google Scholar 

  34. R. A. Forties, R. Bundschuh, and M. G. Poirier, Nucl. Acids Res. 37, 4580 (2009).

    Article  Google Scholar 

  35. D. Demurtas, A. Amzallag, E. J. Rawdon, J. H. Maddocks, J. Dubochet, and A. Stasiak, Nucl. Acids Res. 37, 2882 (2009).

    Article  Google Scholar 

  36. A. P. Fields, E. A. Meyer, and A. E. Cohen, Nucl. Acids Res. 41, 9881 (2013).

    Article  Google Scholar 

  37. H. You, R. Iino, R. Watanabe, and H. Noji, Nucl. Acids Res. 40, e151 (2012).

    Article  Google Scholar 

  38. J. Yan, and J. F. Marko, Phys. Rev. Lett. 93, 108108 (2004).

    Article  ADS  Google Scholar 

  39. P. A. Wiggins, R. Phillips, and P. C. Nelson, Phys. Rev. E 71, 021909 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  40. P. Ranjith, P. B. S. Kumar, and G. I. Menon, Phys. Rev. Lett. 94, 138102 (2005).

    Article  ADS  Google Scholar 

  41. F. H. C. Crick, and A. Klug, Nature 255, 530 (1975).

    Article  ADS  Google Scholar 

  42. H. Fu, H. Chen, X. Zhang, Y. Qu, J. F. Marko, and J. Yan, Nucl. Acids Res. 39, 3473 (2011).

    Article  Google Scholar 

  43. X. Zhang, H. Chen, H. Fu, P. S. Doyle, and J. Yan, Proc. Natl. Acad. Sci. USA 109, 8103 (2012).

    Article  ADS  Google Scholar 

  44. R. Padinhateeri, and G. I. Menon, Biophys. J. 104, 463 (2013).

    Article  ADS  Google Scholar 

  45. J. Curuksu, M. Zacharias, R. Lavery, and K. Zakrzewska, Nucl. Acids Res. 37, 3766 (2009).

    Article  Google Scholar 

  46. P. Cong, L. Dai, H. Chen, J. R. C. van der Maarel, P. S. Doyle, and J. Yan, Biophys. J. 109, 2338 (2015).

    Article  ADS  Google Scholar 

  47. F. Lankas, R. Lavery, and J. H. Maddocks, Structure 14, 1527 (2006).

    Article  Google Scholar 

  48. H. Qu, C. Y. Tseng, Y. Wang, A. J. Levine, and G. Zocchi, Europhys. Lett. 90, 18003 (2010).

    Article  ADS  Google Scholar 

  49. H. Qu, Y. Wang, C.-Y. Tseng, and G. Zocchi, Phys. Rev. X 1, 021008 (2011).

    Google Scholar 

  50. W. H. Taylor, and P. J. Hagerman, J. Mol. Biol. 212, 363 (1990).

    Article  Google Scholar 

  51. C. Roll, C. Ketterle, V. Faibis, G. V. Fazakerley, and Y. Boulard, Bio-chemistry 37, 4059 (1998).

    Google Scholar 

  52. K. Hyz, W. Bocian, R. Kawecki, E. Bednarek, J. Sitkowski, and L. Kozerski, Org. Biomol.Chem. 9, 4481 (2011).

    Article  Google Scholar 

  53. R.M.Harrison, F.Romano, T.EOuldridge, A.A.Louis, and J.P.K.Doye, [arxiv:1506.09005].

  54. R.M.Harrison, F.Romano, T.EOuldridge, A.A.Louis, and J.P.K.Doye, [arxiv:1506.09008].

  55. H. Yamakawa, and W. H. Stockmayer, J. Chem. Phys. 57,2843 (1972).

    Article  ADS  Google Scholar 

  56. Q. Du, A. Kotlyar, and A. Vologodskii, Nucl. Acids Res. 36, 1120 (2007).

    Article  Google Scholar 

  57. A. Vologodskii, and M. D. Frank-Kamenetskii, Nucl. Acids Res. 41, 6785 (2013).

    Article  Google Scholar 

  58. J. SantaLucia, Proc. Natl. Acad. Sci. USA 95, 1460 (1998).

    Article  ADS  Google Scholar 

  59. Y. Zhang, and D. M. Crothers, Biophys. J. 84, 136 (2003).

    Article  ADS  Google Scholar 

  60. I. Grainge, S. Pathania, A. Vologodskii, R. M. Harshey, and M. Jayaram, J. Mol. Biol. 320, 515 (2002).

    Article  Google Scholar 

  61. J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. Lett. 99, 088103 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, P., Yan, J. Recent progress on the mechanics of sharply bent DNA. Sci. China Phys. Mech. Astron. 59, 680001 (2016). https://doi.org/10.1007/s11433-016-0099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-0099-0

Keywords

Navigation