Skip to main content
Log in

Mode characteristics of silver-coated inverted-wedge silica microdisks

  • Article
  • Special Topic: Microcavity Photonics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The characteristics of whispering gallery modes (WGM) in silver-coated inverted-wedge silica microdisks are theoretically investigated by using finite element method. Dielectric TE mode always exists in silver-coated inverted-wedge resonators; dielectric TM mode tends to couple with SPP modes; only pure interior surface plasmonic polariton (SPP) mode but not pure exterior SPP mode is observed in contrast to the metal-coated cylindrical and toroidal resonators. The dependence of quality factor of different kinds of WGMs on the radius of the resonator and the thickness of the coated silver layer are systematically analyzed. We find that the quality factors of the hybrid WGMs associated with SPP mode can reach 104. The maximum light intensity enhancement in ambient for a hybrid mode consisting of a dielectric TM mode and an exterior SPP mode can be obtained when a silver film of thickness ~40 nm is deposited. The silver-coated inverted-wedge silica resonators may be widely applied in sensing and surface enhanced Raman scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vahala K J. Optical microcavities. Nature, 2003; 424: 839–846

    Article  ADS  Google Scholar 

  2. Matsko A B, Ilchenko V S. Optical resonators with whisperinggallery modes-part i: Basics. IEEE J Quantum Elect, 2006; 12: 3–14

    Article  Google Scholar 

  3. Ilchenko V S, Matsko A B. Optical resonators with whisperinggallery modes-part ii: Applications. IEEE J Quantum Elect, 2006; 12: 15–32

    Article  Google Scholar 

  4. Kippenberg T J, Vahala K J. Cavity optomechanics: Back-action at the mesoscale. Science, 2008; 321: 1172–1176

    Article  ADS  Google Scholar 

  5. Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006; 443: 671–674

    Article  ADS  Google Scholar 

  6. He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers. Laser Photon Rev, 2013; 7: 60–82

    Article  Google Scholar 

  7. Zhu J, Özdemir Ş K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photon, 2010; 4: 46–49

    Article  ADS  Google Scholar 

  8. He L, Özdemir Ş K, Zhu J, et al. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol, 2011; 6: 428–432

    Article  ADS  Google Scholar 

  9. Özdemir Ş K, Zhu J, Yang X, et al. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whisperinggallery raman microlaser. Proc Natl Acad Sci USA, 2014, 111: E3836–E3844

    Article  Google Scholar 

  10. Shao L, Jiang X F, Yu X C, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater, 2013; 25: 5616–5620

    Article  Google Scholar 

  11. Li B B, Clements W R, Yu X C, et al. Single nanoparticle detection using split-mode microcavity raman lasers. Proc Natl Acad Sci USA, 2014, 111: 1465714662

    ADS  Google Scholar 

  12. Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics. Nature, 2003; 424: 824–830

    Article  ADS  Google Scholar 

  13. Tian X, Tong L, Xu H. New progress of plasmonics in complex metal nanostructures. Sci China-Phys Mech Astron, 2013, 56: 23272336

    Google Scholar 

  14. Zheng W, Hanbicki A T, Jonker B T, et al. Control of magnetic contrast with nonlinear magneto-plasmonics. Sci Rep, 2014, 4: 6191

    Article  ADS  Google Scholar 

  15. Zheng W, Hanbicki A T, Jonker B T, et al. Surface plasmonenhanced transverse magnetic second-harmonic generation. Opt Express, 2013, 21: 2884228848

    ADS  Google Scholar 

  16. Min B, Ostby E, Sorger V, et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 2009; 457: 455–458

    Article  ADS  Google Scholar 

  17. Xiao Y F, Zou C L, Li B B, et al. High-q exterior whispering-gallery modes in a metal-coated microresonator. Phys Rev Lett, 2010, 105: 153902

    Article  ADS  Google Scholar 

  18. Rottler A, Harland M, Brll M, et al. High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter. Phys Rev Lett, 2013, 111: 253901

    Article  ADS  Google Scholar 

  19. Chen Y L, Zou C L, Hu Y W, et al. High-Q plasmonic and dielectric modes in a metal-coated whispering-gallery microcavity. Phys Rev A, 2013, 87: 023824

    Article  ADS  Google Scholar 

  20. Lu Q, Chen D, Wu G, et al. A hybrid plasmonic microresonator with high quality factor and small mode volume. J Opt, 2012, 14: 125503

    Article  ADS  Google Scholar 

  21. Lu Q, Shu F, Chen D, et al. Focusing of electromagnetic fields in high-Q hybrid wedge plasmon polariton microresonator. Appl Opt, 2012; 51: 6968–6973

    Article  ADS  Google Scholar 

  22. Xiao Y F, Li B B, Jiang X, et al. High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. J Phys B, 2010, 43: 035402

    Article  ADS  Google Scholar 

  23. Zou C L, Xiao Y F, Han Z F, et al. High-Q nanoring surface plasmon microresonator. J Opt Soc Am B, 2010; 27: 2495–2498

    Article  ADS  Google Scholar 

  24. Hu Y W, Li B B, Liu Y X, et al. Hybrid photonicplasmonic mode for refractometer and nanoparticle trapping. Opt Commun, 2013; 291: 380–385

    Article  ADS  Google Scholar 

  25. Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers. Nat Photon, 2010; 4: 395–399

    Article  ADS  Google Scholar 

  26. Xiang C, Chan C K, Wang J. Proposal and numerical study of ultra- compact active hybrid plasmonic resonator for sub-wavelength lasing applications. Sci Rep, 2014, 4: 3720

    ADS  Google Scholar 

  27. Bo F, Huang S H, Özdemir Ş K, et al. Inverted-wedge silica resonators for controlled and stable coupling. Opt Lett, 2014, 39: 18411844

    Article  Google Scholar 

  28. Gu J, Zhang Z, Li M, et al. Mode characteristics of metal-coated microcavity. Phys Rev A, 2014, 90: 013816

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Bo or GuoQuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, F., Wang, X., Li, Y. et al. Mode characteristics of silver-coated inverted-wedge silica microdisks. Sci. China Phys. Mech. Astron. 58, 114207 (2015). https://doi.org/10.1007/s11433-015-5722-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5722-3

Keywords

Navigation