Skip to main content
Log in

Effect of pressure on the performance of plasma synthetic jet actuator

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The effects of the ambient air pressure level on the performance of plasma synthetic jet actuator have been investigated through electrical and optical diagnostics. Pressures from 1 atm down to 0.1 atm were tested with a 10 Hz excitation. The discharge measurement demonstrates that there is a voltage range to make the actuator work reliably. Higher pressure level needs a higher breakdown voltage, and a higher discharge current and energy deposition are produced. But when the actuator works with the maximum breakdown voltage, the fraction of the initial capacitor energy delivered to the arc is almost invariable. This preliminary study also confirms the effectiveness of the plasma synthetic jet at low pressure. Indeed, the maximum velocities of the precursor shock and the plasma jet induced by the actuator with maximum breakdown voltage are independent of the ambient pressure level; reach about 530 and 460 m/s respectively. The mass flux of the plasma jet increases with ambient pressure increasing, but the strength of the precursor shock presents a local maximum at 0.6 atm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun M B, Zhang S P, Zhao Y H, et al. Experimental investigation on transverse jet penetration into a supersonic turbulent crossflow. Sci China-Tech Sci, 2013, 56: 1989–1998

    Article  Google Scholar 

  2. Sun J H, Zhao L Q, Hsu C T. Experimental and numerical study on the flapping motion of submerged turbulent plane jet. Sci China-Tech Sci, 2013, 56: 2391–2397

    Article  Google Scholar 

  3. Wang G L, Chen L W, Lu X Y. Effects of the injector geometry on a sonic jet into a supersonic crossflow. Sci China-Phys Mech Astron, 2013, 56: 366–377

    Article  ADS  Google Scholar 

  4. Glezer A, Amitay M. Synthetic jets. Annu Rev Fluid Mech, 2002, 34: 503–529

    Article  ADS  MathSciNet  Google Scholar 

  5. Zhang P F, Wang J J, Feng L H. Review on the zero-net-mass-flux jet and the application in separation flow control. Sci China-Tech Sci, 2008, 51: 1315–1344

    Article  Google Scholar 

  6. Liang Y C, Kuga Y, Taya M. Design of membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet applications. Sensor Actuat A-Phys, 2006, 125: 512–518

    Article  Google Scholar 

  7. Sawant S G, Oyarzun M, Sheplak M, et al. Modeling of electrodynamic zero-net mass-flux actuators. AIAA J, 2012, 50: 1347–1359

    Article  ADS  Google Scholar 

  8. Luo Z B, Xia Z X, Liu B. New generation of synthetic jet actuators. AIAA J, 2006, 44: 2418–2419

    Article  ADS  Google Scholar 

  9. Zhang P F, Yan B, Dai C F. Lift enhancement method by synthetic jet circulation control. Sci China-Tech Sci, 2012, 55: 2585–2592

    Article  Google Scholar 

  10. Wu Y, Li Y, Jia M, et al. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma. J Appl Phys, 2013, 113: 033303

    Article  ADS  Google Scholar 

  11. Grossman K R, Cybyk B Z, VanWie D M. Sparkjet actuators for flow control. AIAA Paper, 2003, AIAA-2003-57

    Google Scholar 

  12. Wang L, Luo Z B, Xia Z X, et al. Review of actuator for high speed active flow control. Sci China-Tech Sci, 2012, 55: 2225–2240

    Article  Google Scholar 

  13. Yuan D W, Li Y T, Su L N, et al. Filaments in high-speed counter-streaming plasma interactions driven by high-power laser pulses. Sci China-Phys Mech Astron, 2013, 56: 2381–2385

    Article  ADS  Google Scholar 

  14. Narayanaswamy V, Raja L L, Clemens N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control. AIAA J, 2010, 48: 297–305

    Article  ADS  Google Scholar 

  15. Emerick T M, Ali M Y, Foster C H, et al. Sparkjet actuator characterization in supersonic crossflow. AIAA Paper, 2012, AIAA 2012-2814

    Google Scholar 

  16. Ostman R J, Herges T G, Dutton J C, et al. Effect on high-speed boundary-layer characteristics from plasma actuators. AIAA Paper, 2013, AIAA-2013-0527

    Google Scholar 

  17. Narayanaswamy V, Raja L L, Clemens N T. Control of a shock/boundary-layer interaction by using a pulsed-plasma jet actuator. AIAA J, 2012, 50: 246–249

    Article  ADS  Google Scholar 

  18. Reedy T M, Kale N V, Dutton J C, et al. Experimental Characterization of a Pulsed Plasma Jet. AIAA J, 2013, 51: 2027–2031

    Article  ADS  Google Scholar 

  19. Wang L, Xia Z X, Luo Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control. AIAA J, 2014, 52: 879–882

    Article  ADS  Google Scholar 

  20. Belinger A, Hardy P, Barricau P, et al. Influence of the energy dissipation rate in the discharge of a plasma synthetic jet actuator. J Phys D-Appl Phys, 2011, 44: 365201

    Article  Google Scholar 

  21. Jin D, Li Y H, Jia M, et al. Experimental characterization of the plasma synthetic jet actuator. Plasma Sci Technol, 2013, 15: 1034–1040

    Article  ADS  Google Scholar 

  22. Cybyk B Z, Wilkerson J T, Grossman K R, et al. Computational assessment of the sparkjet flow control actuator. AIAA Paper, 2003, AIAA-2003-3711

    Google Scholar 

  23. Shin J. Characteristics of high speed electro-thermal jet activated by pulsed DC discharge. Chin J Aeronaut, 2010, 23: 518–522

    Article  Google Scholar 

  24. Wang L, Luo Z B, Xia Z X, et al. Energy Efficiency and performance characteristics of plasma synthetic jet. Acta Phys Sin, 2013, 62: 125207

    Google Scholar 

  25. Cai G B, Su W, Hou F L. Theoretical development for DSMC local time stepping technique. Sci China-Tech Sci, 2012, 55: 2750–2756

    Article  Google Scholar 

  26. Zhu S Y, Zhu L W. Vibration test condition for spacecraft lift-off environment. Sci China-Tech Sci, 2012, 55: 1954–1959

    Article  Google Scholar 

  27. Haack S J, Taylor T M, Cybyk B Z, et al. Experimental estimation of sparkjet efficiency. AIAA Paper, 2011, AIAA-2011-3997

    Google Scholar 

  28. Raizer Y P. Gas Discharge Physics. Berlin, Heidelberg: SpringerVerlag, 1991

    Book  Google Scholar 

  29. Dawson R, Little J. Characterization of nanosecond pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control. J Appl Phys, 2013, 113: 103302

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenBing Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xia, Z., Luo, Z. et al. Effect of pressure on the performance of plasma synthetic jet actuator. Sci. China Phys. Mech. Astron. 57, 2309–2315 (2014). https://doi.org/10.1007/s11433-014-5611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5611-1

Keywords

Navigation