Skip to main content
Log in

Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Using the finite-difference time-domain (FDTD) method, we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere. The influences of coupling with different nanoparticles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated. It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanoparticle. This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Quinten M, Leitner A, Krenn J R, et al. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett, 1998, 23(17): 1331–1333

    Article  ADS  Google Scholar 

  2. Maier S A, Brongersma M L, Kik P G, et al. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B, 2002, 65(19): 193408

    Article  ADS  Google Scholar 

  3. Liu M Z, Guyot-Sionnest P, Lee T W, et al. Optical properties of rod-like and bipyramidal gold nanoparticles from three-dimensional computations. Phys Rev B, 2007, 76(23): 235428

    Article  ADS  Google Scholar 

  4. Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106

    Article  Google Scholar 

  5. Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78(9): 1667–1670

    Article  ADS  Google Scholar 

  6. Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B, 2006, 110(39): 19220–19225

    Article  Google Scholar 

  7. Haes A J, Van Duyne R P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc, 2002, 124(35): 10596–10604

    Article  Google Scholar 

  8. Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. P Natl Acad Sci USA, 2003, 100(23): 13549–13554

    Article  ADS  Google Scholar 

  9. Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res T, 2004, 3(1): 33–40

    ADS  Google Scholar 

  10. Wiederrecht G P. Near-field optical imaging of noble metal nanoparticles. Eur Phys J-Appl Phys, 2004, 28(1): 3–18

    Article  ADS  Google Scholar 

  11. Betzig E, Trautman J K, Harris T D, et al. Breaking the diffraction barrier: Optical microscopy on a nanometric scale. Science, 1991, 251(5000): 1468–1470

    Article  ADS  Google Scholar 

  12. Anderson N, Bouhelier A, Novotny L. Near-field photonics: Tip-enhanced microscopy and spectroscopy on the nanoscale. J Opt A-Pure Appl Opt, 2006, 8(4): S227–S233

    Article  ADS  Google Scholar 

  13. Jain P K, Eustis S, El-Sayed M A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B, 2006, 110(37): 18243–18253

    Article  Google Scholar 

  14. Su K H, Wei Q H, Zhang X, et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett, 2003, 3(8): 1087–1090

    Article  ADS  Google Scholar 

  15. Jain P K, El-Sayed M A. Universal scaling of plasmon coupling in metal nanostructures: Extension from particle pairs to nanoshells. Nano Lett, 2007, 7(9): 2854–2858

    Article  ADS  Google Scholar 

  16. Jain P K, El-Sayed M A. Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers. J Phys Chem C, 2008, 112(13): 4954–4960

    Article  Google Scholar 

  17. Wei Q H, Su K H, Durant S, et al. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett, 2004, 4(6): 1067–1071

    Article  ADS  Google Scholar 

  18. Pramod P, Thomas K G. Plasmon coupling in dimers of Au nanorods. Adv Mater, 2008, 20(22): 4300–4305

    Article  Google Scholar 

  19. Jain P K, El-Sayed M A. Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing. Nano Lett, 2008, 8(12): 4347–4352

    Article  ADS  Google Scholar 

  20. Murphy C J, Sau T K, Gole A M, et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B, 2005, 109(29): 13857–13870

    Article  Google Scholar 

  21. Imura K, Okamoto H. Reciprocity in scanning near-field optical microscopy: Illumination and collection modes of transmission measurements. Opt Lett, 2006, 31(10): 1474–1476

    Article  ADS  Google Scholar 

  22. Zhang J S, Yang J, Wu X F, et al. Electric field enhancing properties of the V-shaped optical resonant antennas. Opt Express, 2007, 15(25): 16852–16859

    Article  ADS  Google Scholar 

  23. Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6(12): 4370–4379

    Article  ADS  Google Scholar 

  24. Wu X F, Zhang J S, Gong Q H. Metal-insulator-metal nanorod arrays for subwavelength imaging. Opt Express, 2009, 17(4): 2818–2825

    Article  ADS  Google Scholar 

  25. Brioude A, Jiang X C, Pileni M P. Optical properties of gold nanorods: DDA simulations supported by experiments. J Phys Chem B, 2005, 109(27): 13138–13142

    Article  Google Scholar 

  26. Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photon, 2007, 1: 641–648

    Article  ADS  Google Scholar 

  27. Prescott S W, Mulvaney P. Gold nanorod extinction spectra. J Appl Phys, 2006, 99(12): 123504

    Article  ADS  Google Scholar 

  28. Sönnichsen C. Plasmons in metal nanostructures. Doctor Dissertation. Munich: Ludwig-Maximilians-University of Munich, 2001. 47–47

    Google Scholar 

  29. Hohenau A, Krenn J R, Schider G, et al. Optical near-field of multipolar plasmons of rod-shaped gold nanoparticles. Europhys Lett, 2005, 69(4): 538–543

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Li or QiHuang Gong.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10821062 and 10804004), the National Basic Research Program of China (Grant No. 2007CB307001), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800011023)

Contributed by GONG QiHuang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, H., Li, Z. & Gong, Q. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod. Sci. China Ser. G-Phys. Mech. Astron. 52, 1129–1138 (2009). https://doi.org/10.1007/s11433-009-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0171-5

Keywords

Navigation