Skip to main content
Log in

Analysis of film strain and stress in a film-substrate cantilever system

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The bending problem of a magnetic film-nonmagnetic substrate cantilever system is studied by using the principle of energy minimization. Emphasis is placed on the analysis of geometrical and physical parameter dependence of the neutral plane, internal film stress and strain of the cantilever system, and then the influence of such a parameter on the bending characteristic is presented. The results indicate, owing to the anisotropic expanding feature of the magnetostriction, that the neutral plane is generally anisotropic, and moves downwards rapidly with the increasing thickness ratio. Meanwhile, the bounding rigidity of substrate on the film will decrease with the increasing thickness ratio, and thus release the film stress, i.e., it decreases, but the film strain increases. The effect of Poisson’s ratio of the materials on the film strain, the stress and the neutral plane in the direction transverse to the magnetization is prominent. For the strain and the stress in the magnetization, however, the role of Poisson’s ratio is inconspicuous. This property is due to the initiative elongating (or contracting) feature of the magnetic film along its magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Handley R C. Modern Magnetic Materials: Principles and Application. New York: Johnwiley & Sons, Inc., 2002. 667–669

    Google Scholar 

  2. du Trémolet de Lacheisserie E. Magnetostriction: Theory and Applications of Magnetoelasticity. Boca Raton, FL: CRC Press, 1993

    Google Scholar 

  3. Sander D. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep Prog Phys, 1999, 62: 809–858

    Article  ADS  Google Scholar 

  4. Liu X E, Zheng X J. A nonlinear constitutive model for Terfenol-D rods. J Appl Phys, 2005, 97: 053901-1–8

    ADS  Google Scholar 

  5. Zheng X J, Liu X E. A nonlinear constitutive model for magnetostrictive materials. Acta Mech Sin, 2005, 21: 278–285

    Article  ADS  MathSciNet  Google Scholar 

  6. Jia Z Y, Liu W, Zhang Y, et al. A nonlinear magnetomechanical coupling model of giant magnetostricitve thin films at low magnetic fields. Sens Actuat A, 2006, 128: 158–164

    Article  Google Scholar 

  7. Zheng X J, Sun L. A nonlinear constitutive model for Terfenol-D rods. J Appl Phys, 2006, 100: 063906-1–6

    ADS  Google Scholar 

  8. Huang S S, Zhang X. Gradient residual stress induced elastic deformation of multilayer MEMS structures. Sens Actuat A, 2006, 134: 177–185

    Article  Google Scholar 

  9. Jungblut R, Johnson M T, de Stegge J, et al. Orientational and structural dependence of magnetic anisotropy of Cu/Ni/Cu sandwiches: Misfit interface anisotropy. J Appl Phys, 1994, 75: 6424–6426

    Article  ADS  Google Scholar 

  10. Schulz B, Baberschke K. Crossover from in-plane to perpendicular magnetiztion in ultrathin Ni/Cu films. Phys Rev B, 1994, 50: 13467–13471

    Article  ADS  Google Scholar 

  11. Ciria M, Ha K, Bono D, et al. Magnetoelastic coupling in epitaxial Cu/Ni90Fe10/Cu/Si(001) thin films. J Appl Phys, 2002, 91: 8150–8152

    Article  ADS  Google Scholar 

  12. García D, Castaño F J, Padros C, et al. Crossed anisotropies in FeB/CoSiB bilayers induced by the bowed-substrate sputtering technique. Appl Phys Lett, 1999, 74: 105–107

    Article  ADS  Google Scholar 

  13. García D, Muñoz J L, Castaño F J, et al. Anisotropy induced by the bowed-substrate sputtering technique in positive/negative magnetostriction FeB/CoSiB bilayers. J Appl Phys, 1999, 85: 4809–4811

    Article  ADS  Google Scholar 

  14. Mandal K, Vazquez M, García D, et al. Devlopment of a tensile-stress-induced anisotropy in amorphous magnetic thin films. J Magn Magn Mater, 2000, 220: 152–160

    Article  ADS  Google Scholar 

  15. McCord J, Schafer R, Frommberger M, et al. Stress induced remagnetization in magnetostrictive films. J Appl Phys, 2004, 95: 6861–6863

    Article  ADS  Google Scholar 

  16. Klokholm E. The measurement of magnetostriction ferromagnetic thin films. IEEE Trans Magn, 1976, 12: 819–821

    Article  ADS  Google Scholar 

  17. du Trémolet de Lacheisserie E, Peuzin J C. Magnetostriction and internal stresses in thin films: the cantilever method revisited. J Magn Magn Mater, 1994, 136: 189–196

    Article  ADS  Google Scholar 

  18. Marcus P M. Magnetostrictive bending of a film-substrate system. Phys Rev B, 1996, 53: 2481–2486

    Article  ADS  Google Scholar 

  19. Betz J, du Trémolet de Lacheisserie E. Magnetostrictive properties of nickel thin films. Appl Phys Lett, 1996, 68: 132–133

    Article  ADS  Google Scholar 

  20. Klokholm E, Aboaf J A. The saturation magnetostriction of permalloy films. J Appl Phys, 1981, 52: 2474–2476

    Article  ADS  Google Scholar 

  21. Weber M, Koch R, Rieder K H. UHV cantilever beam technique for quantitative measurement of magnetization, magnetostriction, and intrinsic stress of ultrathin magnetic films. Phys Rev Lett, 1994, 73: 1166–1169

    Article  ADS  Google Scholar 

  22. Cirica M, Arnaudas J I, Benito L, et al. Magnetoelastic coupling in thin films with weak out-of-plane anisotropy. Phys Rev B, 2003, 67: 024429-1–6

    ADS  Google Scholar 

  23. Kraus L, Haslar V, Zaveta K, et al. An amorphus magnetic bimetallic sensor material. J Appl Phys, 1995, 78: 6157–6164

    Article  ADS  Google Scholar 

  24. Chu W H, Mehregany M, Mullen R L. Analysis of tip deflection and force of a bimetallic cantilever microactuator. J Micromech Microeng, 1993, 3: 4–7

    Article  Google Scholar 

  25. Gehring G A, Cooke M D, Mattheis R, et al. Cantilever unified theory and optimization for sensors and actuators. Smart Mater Struct, 2000, 9: 918–931

    Article  ADS  Google Scholar 

  26. Iannotti V, Ausanio G, Hison C, et al. Modeling of cantilever deflection for sensors and actuators: Role of Poisson’s ratio for a unified theory. J Appl Phys, 2005, 97: 104516-1–20

    Article  ADS  Google Scholar 

  27. Zhang W X, Peng B, Jiang H C, et al. Influence of film thickness on deformation of a free magnetostrictive film-substrate system. J Magn Magn Mater, 2002, 247: 111–116

    Article  ADS  Google Scholar 

  28. Wetherhold R C, Chopra H D. Beam model for calculating magnetostriction strains in thin films and multilayers. Appl Phys Lett, 2001, 79: 3818–3820

    Article  ADS  Google Scholar 

  29. Guerrero V H, Wetherhold R C. Magnetostrictive bending of cantilever beams and plates. J Appl Phys, 2003, 94: 6659–6666

    Article  ADS  Google Scholar 

  30. Narsu B, Yun G H. Bending characteristic of a cantilevered magnetostricitve film-substrate system. Sci China Ser E-Tech Sci, 2007, 50(4): 454–461

    Article  MATH  Google Scholar 

  31. Narsu B, Yun G H, Rong J H. Design and optimization of cantilevered magnetostrictive film-substrate microactuator. Sci China Ser E-Tech Sci, 2007, 50(5): 683–693

    Article  MATH  Google Scholar 

  32. Sun L, Liu X E, Zheng X J. Numerical simulation of magnetostricitve film-substrate microcantilever. Chin J Appl Mech (in Chinese), 2004, 21: 41–45

    Google Scholar 

  33. Wetherhold R C, Guerrero V H. Magnetoelastic interaction in magnetostrictive spring-magnet multilayers. J Magn Magn Mater, 2004, 269: 61–69

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoHong Yun.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10762001), the Key Project of the Chinese Ministry of Education (Grant No. 206024), and the Program for New Century Excellent Talents in University of China (Grant No. NCET-2005-0272)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, N., Yun, G. Analysis of film strain and stress in a film-substrate cantilever system. Sci. China Ser. G-Phys. Mech. Astron. 51, 1357–1366 (2008). https://doi.org/10.1007/s11433-008-0131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0131-5

Keywords