Skip to main content
Log in

Pushing AI to wireless network edge: an overview on integrated sensing, communication, and computation towards 6G

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Pushing artificial intelligence (AI) from central cloud to network edge has reached board consensus in both industry and academia for materializing the vision of artificial intelligence of things (AIoT) in the sixth-generation (6G) era. This gives rise to an emerging research area known as edge intelligence, which concerns the distillation of human-like intelligence from the vast amount of data scattered at the wireless network edge. Typically, realizing edge intelligence corresponds to the processes of sensing, communication, and computation, which are coupled ingredients for data generation, exchanging, and processing, respectively. However, conventional wireless networks design the three mentioned ingredients separately in a task-agnostic manner, which leads to difficulties in accommodating the stringent demands of ultra-low latency, ultra-high reliability, and high capacity in emerging AI applications like auto-driving and metaverse. This thus prompts a new design paradigm of seamlessly integrated sensing, communication, and computation (ISCC) in a task-oriented manner, which comprehensively accounts for the use of the data in downstream AI tasks. In view of its growing interest, this study provides a timely overview of ISCC for edge intelligence by introducing its basic concept, design challenges, and enabling techniques, surveying the state-of-the-art advancements, and shedding light on the road ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. You X H, Wang C-X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  2. Letaief K B, Shi Y, Lu J, et al. Edge artificial intelligence for 6G: vision, enabling technologies, and applications. IEEE J Sel Areas Commun, 2022, 40: 5–36

    Article  Google Scholar 

  3. Feng Z, Wei Z, Chen X, et al. Joint communication, sensing, and computation enabled 6G intelligent machine system. IEEE Network, 2021, 35: 34–42

    Article  Google Scholar 

  4. Letaief K B, Chen W, Shi Y, et al. The roadmap to 6G: AI empowered wireless networks. IEEE Commun Mag, 2019, 57: 84–90

    Article  Google Scholar 

  5. Shen X, Gao J, Wu W, et al. Holistic network virtualization and pervasive network intelligence for 6G. IEEE Commun Surv Tutorials, 2022, 24: 1–30

    Article  Google Scholar 

  6. Ye H, Li G Y, Juang B H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun Lett, 2018, 7: 114–117

    Article  Google Scholar 

  7. Cisco. Cisco Annual Internet Report (2018–2023). white-paper-c11-741490. 2020

  8. Huawei Technologiy. Communications network 2030. 2022

  9. Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2016–2021. white-paper-c11-738085. 2018

  10. Shi W, Cao J, Zhang Q, et al. Edge computing: vision and challenges. IEEE Internet Things J, 2016, 3: 637–646

    Article  Google Scholar 

  11. Zhou Z, Chen X, Li E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc IEEE, 2019, 107: 1738–1762

    Article  Google Scholar 

  12. Park J, Samarakoon S, Bennis M, et al. Wireless network intelligence at the edge. Proc IEEE, 2019, 107: 2204–2239

    Article  Google Scholar 

  13. He Y, Yu G, Cai Y, et al. Integrated sensing, computation, and communication: system framework and performance optimization. 2022. ArXiv:2211.04022

  14. Chen M, Liang B, Dong M. Joint offloading decision and resource allocation for multi-user multi-task mobile cloud. In: Proceedings of the 2016 IEEE International Conference on Communications (ICC), 2016. 1–6

  15. Hoang D, Niyato D, Wang P. Optimal admission control policy for mobile cloud computing hotspot with cloudlet. In: Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC), 2012. 3145–3149

  16. Mao Y, Zhang J, Song S, et al. Power-delay tradeoff in multi-user mobile-edge computing systems. In: Proceedings of 2016 IEEE Global Communications Conference (GLOBECOM), 2016. 1–6

  17. Wang F, Xu J, Wang X, et al. Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans Wireless Commun, 2018, 17: 1784–1797

    Article  Google Scholar 

  18. Cao X, Wang F, Xu J, et al. Joint computation and communication cooperation for energy-efficient mobile edge computing. IEEE Internet Things J, 2019, 6: 4188–4200

    Article  Google Scholar 

  19. Zhu G, Xu J, Huang K, et al. Over-the-air computing for wireless data aggregation in massive IoT. IEEE Wireless Commun, 2021, 28: 57–65

    Article  Google Scholar 

  20. Cao X, Zhu G, Xu J, et al. Optimized power control design for over-the-air federated edge learning. IEEE J Sel Areas Commun, 2022, 40: 342–358

    Article  Google Scholar 

  21. Liu W, Zang X, Li Y, et al. Over-the-air computation systems: optimization, analysis and scaling laws. IEEE Trans Wireless Commun, 2020, 19: 5488–5502

    Article  Google Scholar 

  22. Cao X, Zhu G, Xu J, et al. Optimized power control for over-the-air computation in fading channels. IEEE Trans Wireless Commun, 2020, 19: 7498–7513

    Article  Google Scholar 

  23. Zhu G, Huang K. MIMO over-the-air computation for high-mobility multimodal sensing. IEEE Internet Things J, 2019, 6: 6089–6103

    Article  Google Scholar 

  24. Fang W, Jiang Y, Shi Y, et al. Over-the-air computation via reconfigurable intelligent surface. IEEE Trans Commun, 2021, 69: 8612–8626

    Article  Google Scholar 

  25. Zhang W, Xu J, Xu W, et al. Worst-case design for RIS-aided over-the-air computation with imperfect CSI. IEEE Commun Lett, 2022, 26: 2136–2140

    Article  Google Scholar 

  26. Fu M, Zhou Y, Shi Y, et al. UAV aided over-the-air computation. IEEE Trans Wireless Commun, 2022, 21: 4909–4924

    Article  Google Scholar 

  27. Liu F, Cui Y, Masouros C, et al. Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond. IEEE J Sel Areas Commun, 2022, 40: 1728–1767

    Article  Google Scholar 

  28. Liu F, Masouros C, Petropulu A P, et al. Joint radar and communication design: applications, state-of-the-art, and the road ahead. IEEE Trans Commun, 2020, 68: 3834–3862

    Article  Google Scholar 

  29. Liu F, Zhou L, Masouros C, et al. Toward dual-functional radar-communication systems: optimal waveform design. IEEE Trans Signal Process, 2018, 66: 4264–4279

    Article  MathSciNet  Google Scholar 

  30. Liu X, Huang T, Shlezinger N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar. IEEE Trans Signal Process, 2020, 68: 3929–3944

    Article  MathSciNet  Google Scholar 

  31. Hua H, Xu J, Han T. Optimal transmit beamforming for integrated sensing and communication. 2021. ArXiv:2104.11871

  32. Liu F, Liu Y F, Li A, et al. Cramér-Rao bound optimization for joint radar-communication beamforming. IEEE Trans Signal Process, 2022, 70: 240–253

    Article  MathSciNet  Google Scholar 

  33. Lyu Z, Zhu G, Xu J. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication. IEEE Trans Wireless Commun, 2022. doi: https://doi.org/10.1109/TWC.2022.3211533

  34. Song X, Xu J, Liu F, et al. Intelligent reflecting surface enabled sensing: Cramér-Rao bound optimization. 2022. ArXiv:2207.05611

  35. Song X, Zhao D, Hua H, et al. Joint transmit and reflective beamforming for IRS-assisted integrated sensing and communication. In: Proceedings of 2022 IEEE Wireless Communications and Networking Conference (WCNC), 2022. 189–194

  36. Wang X, Fei Z, Huang J, et al. Joint waveform and discrete phase shift design for RIS-assisted integrated sensing and communication system under Cramér-Rao bound constraint. IEEE Trans Veh Technol, 2022, 71: 1004–1009

    Article  Google Scholar 

  37. Shi W, Xu W, You X, et al. Intelligent reflection enabling technologies for integrated and green internet-of-everything beyond 5G: communication, sensing, and security. IEEE Wireless Commun, 2022. doi: https://doi.org/10.1109/MWC.018.2100717

  38. Li X, Liu F, Zhou Z, et al. Integrated sensing and over-the-air computation: dual-functional MIMO beamforming design. In: Proceedings of the 1st International Conference on 6G Networking (6GNet), 2022, 1–8

  39. Huang Q, Chen H, Zhang Q. Joint design of sensing and communication systems for smart homes. IEEE Network, 2020, 34: 191–197

    Article  Google Scholar 

  40. Liu F, Yuan W, Masouros C, et al. Radar-assisted predictive beamforming for vehicular links: communication served by sensing. IEEE Trans Wireless Commun, 2020, 19: 7704–7719

    Article  Google Scholar 

  41. Xu W, Yang Z, Yang D, et al. Edge learning for B5G networks with distributed signal processing: semantic communication, edge computing, and wireless sensing. 2022. ArXiv:2206.00422

  42. Liu D, Zhu G, Zhang J, et al. Data-importance aware user scheduling for communication-efficient edge machine learning. IEEE Trans Cogn Commun Netw, 2021, 7: 265–278

    Article  Google Scholar 

  43. Wang S, Wu Y C, Xia M, et al. Machine intelligence at the edge with learning centric power allocation. IEEE Trans Wireless Commun, 2020, 19: 7293–7308

    Article  Google Scholar 

  44. Zhou L, Hong Y, Wang S, et al. Learning centric wireless resource allocation for edge computing: algorithm and experiment. IEEE Trans Veh Technol, 2021, 70: 1035–1040

    Article  Google Scholar 

  45. Zhang H, Cisse M, Dauphin Y, et al. mixup: Beyond empirical risk minimization. 2017. ArXiv:1710.09412

  46. Koda Y, Park J, Bennis M, et al. AirMixML: over-the-air data mixup for inherently privacy-preserving edge machine learning. In: Proceedings of 2021 IEEE Global Communications Conference (GLOBECOM), 2021. 1–6

  47. Zhang T, Wang S, Li G, et al. Accelerating edge intelligence via integrated sensing and communication. In: Proceedings of IEEE International Conference on Communications, 2022. 1586–1592

  48. Ding C, Wang J B, Zhang H, et al. Joint MIMO precoding and computation resource allocation for dual-function radar and communication systems with mobile edge computing. IEEE J Sel Areas Commun, 2022, 40: 2085–2102

    Article  Google Scholar 

  49. Liang Z, Chen H, Liu Y, et al. Data sensing and offloading in edge computing networks: TDMA or NOMA? IEEE Trans Wireless Commun, 2022, 21: 4497–4508

    Article  Google Scholar 

  50. Qi Y, Zhou Y, Liu Y F, et al. Traffic-aware task offloading based on convergence of communication and sensing in vehicular edge computing. IEEE Internet Things J, 2021, 8: 17762–17777

    Article  Google Scholar 

  51. Roth F, Bidoul N, Rosca T, et al. Spike-based sensing and communication for highly energy-efficient sensor edge nodes. In: Proceedings of the 2nd IEEE International Symposium on Joint Communications and Sensing (JCAS), 2022. 1–6

  52. Luo B, Xio W, Wang S, et al. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling. In: Proceedings of IEEE Conference on Computer Communications (INFOCOM), 2022. 1–10

  53. Chen H, Huang S, Zhang D, et al. Federated learning over wireless IoT networks with optimized communication and resources. IEEE Internet Things J, 2022, 9: 16592–16605

    Article  Google Scholar 

  54. Chen M, Yang Z, Saad W, et al. A joint learning and communications framework for federated learning over wireless networks. IEEE Trans Wireless Commun, 2021, 20: 269–283

    Article  Google Scholar 

  55. Xu J, Wang H. Client selection and bandwidth allocation in wireless federated learning networks: a long-term perspective. IEEE Trans Wireless Commun, 2021, 20: 1188–1200

    Article  Google Scholar 

  56. Nguyen V D, Sharma S K, Vu T X, et al. Efficient federated learning algorithm for resource allocation in wireless IoT networks. IEEE Internet Things J, 2020, 8: 3394–3409

    Article  Google Scholar 

  57. Dinh C T, Tran N H, Nguyen M N H, et al. Federated learning over wireless networks: convergence analysis and resource allocation. IEEE ACM Trans Networking, 2021, 29: 398–409

    Article  Google Scholar 

  58. Ma Z, Xu Y, Xu H, et al. Adaptive batch size for federated learning in resource-constrained edge computing. IEEE Trans Mobile Comput, 2023, 22: 37–53

    Article  Google Scholar 

  59. Battiloro C, Lorenzo P D, Merluzzi M, et al. Lyapunov-based optimization of edge resources for energy-efficient adaptive federated learning. IEEE Trans Green Commun Netw, 2023. doi: https://doi.org/10.1109/TGCN.2022.3186879

  60. Luo B, Xiao W, Wang S, et al. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling. In: Proceedings of IEEE Conference on Computer Communications, 2022. 1739–1748

  61. Liu P, Jiang J, Zhu G, et al. Training time minimization for federated edge learning with optimized gradient quantization and bandwidth allocation. Front Inform Technol Electron Eng, 2022, 23: 1247–1263

    Article  Google Scholar 

  62. Cao X, Lyu Z, Zhu G, et al. An overview on over-the-air federated edge learning. 2022. ArXiv:2208.05643

  63. Zhu G, Wang Y, Huang K. Broadband analog aggregation for low-latency federated edge learning. IEEE Trans Wireless Commun, 2019, 19: 491–506

    Article  Google Scholar 

  64. Zhang N, Tao M. Gradient statistics aware power control for over-the-air federated learning. IEEE Trans Wireless Commun, 2021, 20: 5115–5128

    Article  Google Scholar 

  65. Cao X, Zhu G, Xu J, et al. Transmission power control for over-the-air federated averaging at network edge. IEEE J Select Areas Commun, 2022, 40: 1571–1586

    Article  Google Scholar 

  66. Yang K, Jiang T, Shi Y, et al. Federated learning via over-the-air computation. IEEE Trans Wireless Commun, 2020, 19: 2022–2035

    Article  Google Scholar 

  67. Sun Y, Zhou S, Niu Z, et al. Dynamic scheduling for over-the-air federated edge learning with energy constraints. IEEE J Sel Areas Commun, 2022, 40: 227–242

    Article  Google Scholar 

  68. Haque A, Milstein A, Fei-Fei L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature, 2020, 585: 193–202

    Article  Google Scholar 

  69. Liu D, Simeone O. Privacy for free: wireless federated learning via uncoded transmission with adaptive power control. IEEE J Sel Areas Commun, 2021, 39: 170–185

    Article  Google Scholar 

  70. Liu H, Yuan X, Zhang Y J A. Reconfigurable intelligent surface enabled federated learning: a unified communication-learning design approach. IEEE Trans Wireless Commun, 2021, 20: 7595–7609

    Article  Google Scholar 

  71. Shi Y, Zhou Y, Shi Y. Over-the-air decentralized federated learning. In: Proceedings of 2021 IEEE International Symposium on Information Theory (ISIT), 2021. 455–460

  72. Ozfatura E, Rini S, Gündüz D. Decentralized SGD with over-the-air computation. In: Proceedings of IEEE Global Communications Conference, 2020. 1–6

  73. Li G, Wang S, Li J, et al. Rethinking the tradeoff in integrated sensing and communication: recognition accuracy versus communication rate. 2021. ArXiv:2107.09621

  74. Liu P, Zhu G, Wang S, et al. Toward ambient intelligence: federated edge learning with task-oriented sensing, computation, and communication integration. IEEE J Sel Sig Process, 2022. doi: https://doi.org/10.1109/JSTSP.2022.3226836

  75. Zhang T, Wang S, Li G, et al. Accelerating edge intelligence via integrated sensing and communication. 2021. ArXiv:2107.09574

  76. Cui Y, Liu F, Jing X, et al. Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges. IEEE Network, 2021, 35: 158–167

    Article  Google Scholar 

  77. Liu A, Huang Z, Li M, et al. A survey on fundamental limits of integrated sensing and communication. IEEE Commun Surv Tut, 2022, 24: 994–1034

    Article  Google Scholar 

  78. Li X, Liu F, Zhou Z, et al. Integrated sensing, communication, and computation over-the-air: MIMO beamforming design. 2022. ArXiv:2201.12581

  79. Liu P, Zhu G, Jiang W, et al. Vertical federated edge learning with distributed integrated sensing and communication. IEEE Commun Lett, 2022, 26: 2091–2095

    Article  Google Scholar 

  80. Guo J, Liu Q, Chen E. A deep reinforcement learning method for multimodal data fusion in action recognition. IEEE Signal Process Lett, 2022, 29: 120–124

    Article  Google Scholar 

  81. Chen M, Gündüz D, Huang K, et al. Distributed learning in wireless networks: recent progress and future challenges. IEEE J Sel Areas Commun, 2021, 39: 3579–3605

    Article  Google Scholar 

  82. Xu W, Yang Z, Ng D K W, et al. Edge learning for B5G networks with distributed signal processing: semantic communication, edge computing, and wireless sensing. 2022. ArXiv:2206.00422

  83. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 770–778

  84. Yilmaz S F, Hasircioglu B, Gündüz D. Over-the-air ensemble inference with model privacy. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), 2022. 1265–1270

  85. Yang K, Shi Y, Yu W, et al. Energy-efficient processing and robust wireless cooperative transmission for edge inference. IEEE Internet Things J, 2020, 7: 9456–9470

    Article  Google Scholar 

  86. Hua S, Zhou Y, Yang K, et al. Reconfigurable intelligent surface for green edge inference. IEEE Trans Green Commun Netw, 2021, 5: 964–979

    Article  Google Scholar 

  87. Jankowski M, Gündüz D, Mikolajczyk K. Deep joint source-channel coding for wireless image retrieval. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICSAAP), 2020. 5070–5074

  88. Jankowski M, Gündüz D, Mikolajczyk K. Wireless image retrieval at the edge. IEEE J Sel Areas Commun, 2020, 39: 89–100

    Article  Google Scholar 

  89. Shao J, Mao Y, Zhang J. Learning task-oriented communication for edge inference: an information bottleneck approach. IEEE J Sel Areas Commun, 2021, 40: 197–211

    Article  Google Scholar 

  90. Pezone F, Barbarossa S, Lorenzo P D. Goal-oriented communication for edge learning based on the information bottleneck. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICSAAP), 2020. 8832–8836

  91. Shao J, Mao Y, Zhang J. Task-oriented communication for multi-device cooperative edge inference. 2021. ArXiv:2109.00172

  92. Xie H, Qin Z, Li G Y. Task-oriented multi-user semantic communications for VQA. IEEE Wireless Commun Lett, 2022, 11: 553–557

    Article  Google Scholar 

  93. Huang X, Zhou S. Dynamic compression ratio selection for edge inference systems with hard deadlines. IEEE Internet Things J, 2020, 7: 8800–8810

    Article  Google Scholar 

  94. Tang X, Chen X, Zeng L, et al. Joint multiuser DNN partitioning and computational resource allocation for collaborative edge intelligence. IEEE Internet Things J, 2021, 8: 9511–9522

    Article  Google Scholar 

  95. Shao J, Zhang J. Communication-computation trade-off in resource-constrained edge inference. IEEE Commun Mag, 2020, 58: 20–26

    Article  Google Scholar 

  96. Liu Z, Lan Q, Huang K. Resource allocation for multiuser edge inference with batching and early exiting. 2020. ArXiv:2204.05223

  97. Lan Q, Zeng Q, Popovski P, et al. Progressive feature transmission for split inference at the wireless edge. 2021. ArXiv:2112.07244

  98. Wen D, Jiao X, Liu P, et al. Task-oriented over-the-air computation for multi-device edge AI. 2022. ArXiv:2211.01255

  99. Lee M, Yu G, Dai H. Privacy-preserving decentralized inference with graph neural networks in wireless networks. 2022. ArXiv:2208.06963

  100. Wen D, Liu P, Zhu G, et al. Task-oriented sensing, computation, and communication integration for multi-device edge AI. 2022. ArXiv:2207.00969

  101. Tishby N, Pereira F C, Bialek W. The information bottleneck method. 2000. ArXiv:0004057

Download references

Acknowledgements

The work was supported in part by National Key R&D Program of China (Grant No. 2018YFB1800800), Basic Research Project of Hetao Shenzhen-HK S&T Cooperation Zone (Grant No. HZQB-KCZYZ-2021067), National Natural Science Foundation of China (Grant Nos. U2001208, 61871137, 62001310), Science and Technology Program of Guangdong Province (Grant No. 2021A0505030002), Shenzhen Fundamental Research Program (Grant No. 20210318123512002), Guangdong Provincial Key Laboratory of Future Networks of Intelligence (Grant No. 2022B1212010001), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010109), and Shenzhen Key Laboratory of Big Data and Artificial Intelligence (Grant No. ZDSYS201707251409055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Xu or Shuguang Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Lyu, Z., Jiao, X. et al. Pushing AI to wireless network edge: an overview on integrated sensing, communication, and computation towards 6G. Sci. China Inf. Sci. 66, 130301 (2023). https://doi.org/10.1007/s11432-022-3652-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3652-2

Keywords

Navigation