Skip to main content
Log in

A theoretical framework for quantum image representation and data loading scheme

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Two fundamental problems exist in the use of quantum computation to process an image or signal. The first one is how to represent giant data, such as image data, using quantum state without losing information. The second one is how to load a colossal volume of data into the quantum registers of a quantum CPU from classical electronic memory. Researches on these two questions are rarely reported. Here an entangled state is used to represent an image (or vector) for which two entangled registers are used to store a vector component and its classical address. Using the representation, n 1 + n 2 + 8 qubits are used to store the whole information of the gray image that has a \(2^{n_1 } \times 2^{n_2 } \) size at a superposition of states, a feat is not possible with a classic computer. The way of designing a unitary operation to load data, such as a vector (or image), into the quantum registers of a quantum CPU from electronic memory is defined herein as a quantum loading scheme (QLS). In this paper, the QLS with time complexity O(log2 N) is presented where N denotes the number of vector components, a solution that would break through the efficiency bottleneck of loading data. QLS would enable a quantum CPU to be compatible with electronic memory and make possible quantum image compression and quantum signal processing that has classical input and output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castlman K R. Digital Image Processing (in Chinese). Beijing: Publishing House of Electronics Industry, 2002

    Google Scholar 

  2. Tang S F. Computer Organization and Architecture (in Chinese). Beijing: Higher Education Press, 2000

    Google Scholar 

  3. Feynman R. Simulating physics with computers. Int J Theor Phys, 1982, 21: 467–488

    Article  MathSciNet  Google Scholar 

  4. Deutsch D. Quantum theory: the Church-Turing principle and the universal quantum computer. Proc R Soc A-Math Phys Eng Sci, 1985, 400: 97–117

    Article  MATH  MathSciNet  Google Scholar 

  5. Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. Proc R Soc A-Math Phys Eng Sci, 1992, 439: 553–558

    Article  MATH  MathSciNet  Google Scholar 

  6. Cleve R, Ekert A, Macchiavello C, et al. Quantum algorithms revisited. arXiv: quant-ph/9708016v1, 1997

    Google Scholar 

  7. Shor P W. Introduction to quantum algorithms. arXiv: quant-ph/0005003v2, 2000

    Google Scholar 

  8. Simon D R. On the power of quantum computation. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, 1994. 116–123

    Chapter  Google Scholar 

  9. Shor P W. Algorithms for quantum computation discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, 1994. 124–134

    Chapter  Google Scholar 

  10. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. Philadelphia: ACM Press, 1996. 212–218

    Google Scholar 

  11. Coppersmith D. An approximate fourier transform useful in quantum factoring. arXiv:quant-ph/0201067v1, 2002

    Google Scholar 

  12. Griffiths R B, Niu C S. Semiclassical Fourier transform for quantum computation. arXiv:quant-ph/9511007v1, 1995

    Google Scholar 

  13. Kitaev A Y. Quantum measurements and the Abelian stabilizer problem. arXiv:quant-ph/9511026v1, 1995

    Google Scholar 

  14. Mosca M. Quantum computer algorithms. Dissertation for the Doctoral Degree. University of Oxford, 1999

    Google Scholar 

  15. Mosca M. Quantum algorithms. arXiv: quant-ph/0808.0369v1, 2008

    Google Scholar 

  16. Kaye P, Laflamme R, Mosca M. An Introduction to Quantum Computing. Oxford University Press, 2007

    MATH  Google Scholar 

  17. Yao A. Quantum circuit complexity. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science. Los Alamitos: IEEE Computer Society Press, 1993. 352–361

    Google Scholar 

  18. Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput, 1997, 26: 1411–1473

    Article  MATH  MathSciNet  Google Scholar 

  19. Watrous J. Quantum computational complexity. In: Meyers R A, ed. Encyclopedia of Complexity and System Science. Berlin: Springer, 2009. 7174–7201

    Chapter  Google Scholar 

  20. Vandersypen L M K, Steffen M, Breyta G, et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature, 2001, 414: 883–887

    Article  Google Scholar 

  21. Lu C Y, Browne D E, Yang T, et al. Demonstration of Shor’s quantum factoring algorithm using photonic qubits. Phys Rev Lett, 2007, 99: 250504

    Article  Google Scholar 

  22. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47: 777–780

    Article  MATH  Google Scholar 

  23. Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglement by local operations. arXiv:quantph/ 9511030v1, 1995

    Google Scholar 

  24. Hill S, Wootters W K. Entanglement of a pair of quantum bits. arXiv:quant-ph/9703041v2, 1997

    Google Scholar 

  25. Cirac J I, Zoller P, Kimble H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. arXiv:quant-ph/9611017v1, 1996

    Google Scholar 

  26. Bennett C H, DiVincenzo D P, Smolin J A, et al. Mixed state entanglement and quantum error correction. arXiv:quantph/ 9604024v2, 1996

    Google Scholar 

  27. Zukowski M, Zeilinger A, Horne M A, et al. Event-ready-detectors Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290

    Article  Google Scholar 

  28. Vidal G, Latorre J I, Rico E, et al. Entanglement in quantum critical phenomena. arXiv:quant-ph/0211074v1, 2002

    Google Scholar 

  29. Braunstein S L, Fuchs C A, Gottesman D, et al. A quantum analog of Huffman coding. IEEE Trans Inf Theory, 2000, 46: 1644–1649

    Article  MATH  MathSciNet  Google Scholar 

  30. Devetak I, Winter A. Classical data compression with quantum side information. arXiv:quant-ph/0209029v4, 2003

    Google Scholar 

  31. Winter A. Compression of sources of probability distributions and density operators. arXiv:quant-ph/0208131v1, 2002

    Google Scholar 

  32. Hayden P, Jozsa R, Winter A. Trading quantum for classical resources in quantum data compression. arXiv:quantph/ 0204038v1, 2002

    Google Scholar 

  33. Ahn C, Doherty A C, Hayden P, et al. On the distributed compression of quantum information. IEEE Trans Inf Theory, 2006, 52: 4349–4357

    Article  MathSciNet  Google Scholar 

  34. Latorre J I. Image compression with entanglement. arXiv:quant-ph/0510031, 2005

    Google Scholar 

  35. Pang C Y. Quantum image compression. Postdoctoral Report. Hefei: Key Laboratory of Quantum Information, University of Science and Technology of China, 2006

    Google Scholar 

  36. Pang C Y, Zhou Z W, Chen P X, et al. Design of quantum VQ iteration and quantum VQ encoding algorithm taking \(O(\sqrt n )\) steps for data compression. Chin Phys B, 2006, 15: 618–623

    Article  Google Scholar 

  37. Pang C Y, Zhou Z W, Guo G C. A hybrid quantum encoding algorithm of vector quantization for image compression. Chin Phys B, 2006, 15: 3039–3043

    Article  Google Scholar 

  38. Pang C Y, Zhou Z W, Guo G C. Quantum discrete cosine transform for image compression. arXiv:quant-ph/0601043, 2006

    Google Scholar 

  39. Pang C Y, Hu B Q. A quantum search algorithm of two entangled registers to realize quantum discrete Fourier transform of signal processing. Chin Phys B, 2008, 17: 3220–3226

    Article  Google Scholar 

  40. Pang C Y, Ding C B, Hu B Q. Quantum pattern recognition of classical signal. http://arxiv.org/abs/0707.0936, 2007

    Google Scholar 

  41. Schutzhold R. Pattern recognition on a quantum computer. Phys Rev A, 2003, 67: 062311

    Article  MathSciNet  Google Scholar 

  42. Schaller G, Schutzhold R. Quantum algorithm for optical-template recognition with noise filtering. Phys Rev A, 2006, 74: 012303

    Article  Google Scholar 

  43. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2002

    Google Scholar 

  44. Giovannetti V, Lloyd S, Maccone L. Quantum random access memory. Phys Rev Lett, 2008, 100: 160501

    Article  MathSciNet  Google Scholar 

  45. Giovannetti V, Lloyd S, Maccone L. Architectures for a quantum random access memory. arXiv:quant-ph/0807.4994v1, 2008

    Google Scholar 

  46. Galindo A, Martin-Delgado M A. Information and computation: Classical and quantum aspects. Rev Mod Phys, 2002, 74: 347–423

    Article  MATH  MathSciNet  Google Scholar 

  47. Arndt M, Nairz O, Vos-Andreae J, et al. Wave particle duality of C60 molecules. Nature, 1999, 401: 680–682

    Article  Google Scholar 

  48. Hosten O, Rakher M T, Barreiro J T, et al. Counterfactual quantum computation through quantum interrogation. Nature, 2006, 439: 949–952

    Article  Google Scholar 

  49. Yan W M, Wu W M. Data Structure (in Chinese). Beijing: Tsinghua University Press, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoYang Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Huang, X., Zhou, R. et al. A theoretical framework for quantum image representation and data loading scheme. Sci. China Inf. Sci. 57, 1–11 (2014). https://doi.org/10.1007/s11432-013-4866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4866-x

Keywords

Navigation