Skip to main content
Log in

Recent advances in gadolinium-based MRI metal responsive agent

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Smart magnetic resonance imaging (MRI) contrast agent has the ability to increase or decrease the signal intensity through response to certain analyte. Among the growing class of responsive agent, imaging probes based on gadolinium ion are developing fast in the last decade since they play an important role in physiological and pathology process in living system. This minireview would highlight recent progress in metal responsive gadolinium-based MRI contrast agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viswanathan S, Kovacs Z, Green K N, et al. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem Rev, 2010, 110: 2960–3018

    Article  Google Scholar 

  2. Aime S, Botta M, Fasano M, et al. Lanthanide(III) chelates for NMR biomedical applications. Chem Soc Rev, 1998, 27: 19–29

    Article  Google Scholar 

  3. Que E L, Chang C J. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem Soc Rev, 2010, 39: 51–60

    Article  Google Scholar 

  4. Lattuada L, Barge A, Cravotto G, et al. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev, 2011, 40: 3019–3049

    Article  Google Scholar 

  5. Pierre V C, Harris S M, Pailloux S L. Comparing strategies in the design of responsive contrast agents for magnetic resonance imaging: A case study with copper and zinc. Acc Chem Res, 2018, 51: 342–351

    Article  Google Scholar 

  6. Caravan P, Ellison J J, McMurry T J, et al. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem Rev, 1999, 99: 2293–2352

    Article  Google Scholar 

  7. Lauffer R B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem Rev, 1987, 87: 901–927

    Article  Google Scholar 

  8. Sherry A D, Wu Y. The importance of water exchange rates in the design of responsive agents for MRI. Curr Opin Chem Biol, 2013, 17: 167–174

    Article  Google Scholar 

  9. Aime S, Crich S G, Gianolio E, et al. High sensitivity lanthanide(III) based probes for MR-medical imaging. Coord Chem Rev, 2006, 250: 1562–1579

    Article  Google Scholar 

  10. Peters J A, Huskens J, Raber D J. Lanthanide induced shifts and relaxation rate enhancements. Prog Nucl Magn Reson Spectr, 1996, 28: 283–350

    Article  Google Scholar 

  11. Otting G. Prospects for lanthanides in structural biology by NMR. J Biomol NMR, 2008, 42: 1–9

    Article  Google Scholar 

  12. Berridge M J, Lipp P, Bootman M D. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol, 2000, 1: 11–21

    Article  Google Scholar 

  13. Li W, Fraser S E, Meade T J. A calcium-sensitive magnetic resonance imaging contrast agent. J Am Chem Soc, 1999, 121: 1413–1414

    Article  Google Scholar 

  14. Dhingra K, Maier M E, Beyerlein M, et al. Synthesis and characterization of a smart contrast agent sensitive to calcium. Chem Commun, 2008, 57: 3444–3446

    Article  Google Scholar 

  15. Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease. Neurobiol Dis, 1999, 6: 221–230

    Article  Google Scholar 

  16. Que E L, Chang C J. A smart magnetic resonance contrast agent for selective copper sensing. J Am Chem Soc, 2006, 128: 15942–15943

    Article  Google Scholar 

  17. Jang J H, Bhuniya S, Kang J, et al. Cu2+-responsive bimodal (optical/MRI) contrast agent for cellular imaging. Org Lett, 2013, 15: 4702–4705

    Article  Google Scholar 

  18. Lauffer R B, Parmelee D J, Dunham S U, et al. MS-325: Albumintargeted contrast agent for MR angiography. Radiology, 1998, 207: 529–538

    Article  Google Scholar 

  19. Maret W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv Nutr, 2013, 4: 82–91

    Article  Google Scholar 

  20. Kim B J, Kim Y H, Kim S, et al. Zinc as a paracrine effector in pancreatic islet cell death. Diabetes, 2000, 49: 367–372

    Article  Google Scholar 

  21. Myers S A, Nield A, Myers M. Zinc transporters, mechanisms of action and therapeutic utility: Implications for type 2 diabetes mellitus. J Nutr Metabol, 2012, 2012: 1–13

    Article  Google Scholar 

  22. Kolenko V, Teper E, Kutikov A, et al. Zinc and zinc transporters in prostate carcinogenesis. Nat Rev Urol, 2013, 10: 219–226

    Article  Google Scholar 

  23. Esqueda A C, Lopez J A, Andreu-de-Riquer G, et al. A new gadolinium-based MRI zinc sensor. J Am Chem Soc, 2009, 131: 11387–11391

    Article  Google Scholar 

  24. Yu J, Martins A F, Preihs C, et al. Amplifying the sensitivity of zinc (II) responsive MRI contrast agents by altering water exchange rates. J Am Chem Soc, 2015, 137: 14173–14179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Kai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, J. & Liu, K. Recent advances in gadolinium-based MRI metal responsive agent. Sci. China Technol. Sci. 61, 1329–1333 (2018). https://doi.org/10.1007/s11431-018-9315-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9315-7

Keywords

Navigation