Skip to main content
Log in

Synchronization criteria for multiple memristor-based neural networks with time delay and inertial term

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

This present work uses different methods to synchronize the inertial memristor systems with linear coupling. Firstly, the math- ematical model of inertial memristor-based neural networks (IMNNs) with time delay is proposed, where the coupling matrix satisfies the diffusion condition, which can be symmetric or asymmetric. Secondly, by using differential inclusion method and Halanay inequality, some algebraic self-synchronization criteria are obtained. Then, via constructing effective Lyapunov functional, designing discontinuous control algorithms, some new sufficient conditions are gained to achieve synchronization of networks. Finally, two illustrative simulations are provided to show the validity of the obtained results, which cannot be contained by each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua L. Memristor The missing circuit element. IEEE Trans Circuit Theor, 1971, 18: 507–C519

    Article  Google Scholar 

  2. Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80–C83

    Article  Google Scholar 

  3. Tour J M, He T. Electronics: The fourth element. Nature, 2008, 453: 42–C43

    Article  Google Scholar 

  4. Wang W, Li L, Peng H, et al. Anti-synchronization of coupled memris- tive neutral-type neural networks with mixed time-varying delays via randomly occurring control. Nonlinear Dyn, 2016, 83: 2143–C2155

    Article  MATH  Google Scholar 

  5. Thomas A. Memristor-based neural networks. J Phys D-Appl Phys, 2013, 46: 093001

    Article  Google Scholar 

  6. Wen S, Zeng Z, Huang T. Exponential stability analysis of memristor- based recurrent neural networks with time-varying delays. Neurocom- puting, 2012, 97: 233–C240

    Article  Google Scholar 

  7. Chen J, Zeng Z, Jiang P. Global Mittag-Leffler stability and synchro- nization of memristor-based fractional-order neural networks. Neural Networks, 2014, 51: 1–C8

    Article  MATH  Google Scholar 

  8. Guo Z, Wang J, Yan Z. Global exponential dissipativity and stabiliza- tion of memristor-based recurrent neural networks with time-varying delays. Neural Networks, 2013, 48: 158–C172

    Article  MATH  Google Scholar 

  9. Guo Z, Wang J, Yan Z. Attractivity analysis of memristor-based cellu- lar neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst, 2014, 25: 704–C717

    Article  Google Scholar 

  10. Bao H B, Cao J D. Projective synchronization of fractional-order memristor-based neural networks. Neural Networks, 2015, 63: 1–C9

    Article  MATH  Google Scholar 

  11. Yu J, Hu C, Jiang H, et al. Projective synchronization for fractional neural networks. Neural Networks, 2014, 49: 87–C95

    Article  MATH  Google Scholar 

  12. Zhang W, Li C, Huang T, et al. Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and im-pulses. IEEE Trans Neural Netw Learn Syst, 2015, 26: 3308–C3313

    Article  MathSciNet  Google Scholar 

  13. Li N, Cao J. New synchronization criteria for memristor-based net- works: Adaptive control and feedback control schemes. Neural Net-works, 2015, 61: 1–C9

    Article  MATH  Google Scholar 

  14. Wu A, Wen S, Zeng Z. Synchronization control of a class of memristor- based recurrent neural networks. Inf Sci, 2012, 183: 106–C116

    Article  MathSciNet  MATH  Google Scholar 

  15. Pecora L M, Carroll T L. Synchronization in chaotic systems. Phys Rev Lett, 1990, 64: 821–C824

    Article  MathSciNet  MATH  Google Scholar 

  16. Abdurahman A, Jiang H, Teng Z. Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Networks, 2015, 69: 20–C28

    Article  Google Scholar 

  17. Liu X, Ho D W C, Cao J, et al. Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans Neural Netw Learn Syst, 2017, 28: 2826–C2830

    Article  MathSciNet  Google Scholar 

  18. Liu X, Cao J, Yu W, et al. Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans Cybern, 2016, 46: 2360–C2371

    Article  Google Scholar 

  19. Yang X, Ho D W C. Synchronization of delayed memristive neural networks: Robust analysis approach. IEEE Trans Cybern, 2016, 46: 3377–C3387

    Article  Google Scholar 

  20. Liu H, Wang Z, Shen B, et al. Event-triggered H state estimation for delayed stochastic memristive neural networks with missing measure- ments: The discrete time case. IEEE Trans Neural Netw Learn Syst, 2017, PP: 1–C12

    Google Scholar 

  21. Yang X S, Cao J D, Xu C, et al. Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller. Sci China Tech Sci, 2018, 61: 299–C308

    Article  Google Scholar 

  22. Aihara K, Takabe T, Toyoda M. Chaotic neural networks. Phys Lett A, 1990, 144: 333–C340

    Article  MathSciNet  Google Scholar 

  23. Ashmore J F, Attwell D. Models for electrical tuning in hair cells. Proc R Soc B-Biol Sci, 1985, 226: 325–C344

    Article  Google Scholar 

  24. Koch C. Cable theory in neurons with active, linearized membranes. Biol Cybern, 1984, 50: 15–C33

    Article  Google Scholar 

  25. Babcock K L, Westervelt R M. Stability and dynamics of simple elec- tronic neural networks with added inertia. Phys D-Nonlinear Phenom, 1986, 23: 464–C469

    Article  Google Scholar 

  26. Cao J, Wan Y. Matrix measure strategies for stability and synchroniza- tion of inertial BAM neural network with time delays. Neural Net-works, 2014, 53: 165–C172

    Article  MATH  Google Scholar 

  27. Qi J, Li C, Huang T. Stability of inertial BAM neural network with time-varying delay via impulsive control. Neurocomputing, 2015, 161: 162–C167

    Article  Google Scholar 

  28. Rakkiyappan R, Premalatha S, Chandrasekar A, et al. Stability and synchronization analysis of inertial memristive neural networks with time delays. Cogn Neurodyn, 2016, 10: 437–C451

    Article  Google Scholar 

  29. Yu S, Zhang Z, Quan Z. New global exponential stability conditions for inertial Cohen-Grossberg neural networks with time delays. Neurocomputing, 2015, 151: 1446–C1454

    Article  Google Scholar 

  30. Xiao Q, Huang Z, Zeng Z. Passivity analysis for memristor-based inertial neural networks with discrete and distributed delays. IEEE Trans Syst Man Cybern Syst, 2017, PP: 1–C11

    Google Scholar 

  31. Filippov A F. Differential equations with discontinuous right-hand side. Mat Sb, 1960, 51: 99–C128

    MathSciNet  MATH  Google Scholar 

  32. Aubin J P, Cellina A. Differential Inclusions. Berlin: Springer-Verlag, 1984

    Book  MATH  Google Scholar 

  33. Lu W, Chen T. Dynamical behaviors of delayed neural network systems with discontinuous activation functions. Neural Comput, 2006, 18: 683–C708

    Article  MathSciNet  MATH  Google Scholar 

  34. Cao J. An estimation of the domain of attraction and convergence rate for Hopfield continuous feedback neural networks. Phys Lett A, 2004, 325: 370–C374

    Article  MathSciNet  MATH  Google Scholar 

  35. Chai Wah Wu, Chua L O. Synchronization in an array of linearly coupled dynamical systems. IEEE Trans Circuits Syst I, 1995, 42: 430–C447

    Article  MathSciNet  MATH  Google Scholar 

  36. Halanay A. Differential Equations: Stability, Oscillations, Time Lags. New York: Academic Press, 1966

    MATH  Google Scholar 

  37. Boyd S, Ghaoui L E, Feron E, et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994

    Google Scholar 

  38. Cao J, Li R. Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci China Inf Sci, 2017, 60: 032201

    Article  Google Scholar 

  39. Huang X, Fan Y, Jia J, et al. Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches. IET Control Theory Appl, 2017, 11: 2317–C2327

    Article  MathSciNet  Google Scholar 

  40. Zhang W, Huang T, He X, et al. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses. Neural Networks, 2017, 95: 102–C109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Li or JinDe Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Cao, J. Synchronization criteria for multiple memristor-based neural networks with time delay and inertial term. Sci. China Technol. Sci. 61, 612–622 (2018). https://doi.org/10.1007/s11431-017-9189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9189-3

Keywords

Navigation