Skip to main content
Log in

Constructal entransy dissipation rate minimization for helm-shaped fin with inner heat sources

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A model of three-dimensional helm-shaped body composed of a helm-shaped fin and inner heat sources is built in this paper. For the specified volumes of the body, fin and heat source, the constructal optimizations of the body with single and multiple inner heat sources are implemented. The entransy-dissipation-rate-based equivalent thermal resistance (ETR) is minimized in the optimizations. It shows that for the helm-shaped body with multiple inner heat sources, there exist an optimal ratio of the heat source distance to the radius of the extended fin and a twice optimal radius ratio of the centre fin to the extended fin which lead to the double minimum dimensionless ETR. Comparing the optimal result of the body with helm-shaped fin with that with annular fin, the radius of the centre fin and the distance between the heat source and the center of the body are decreased, and the ETR is decreased by 9.57%. Essentially, the temperature gradient field of the helm-shaped body is more homogenous, and its global heat transfer performance is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Wang A, Liang X, Ren J. Constructal enhancement of heat conduction with phase change. Int J Thermophysics, 2006, 27: 126–138

    Article  MATH  Google Scholar 

  3. Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008

    Book  Google Scholar 

  4. Chen L G. Progress in study on constructal theory and its application. Sci China Tech Sci, 2012, 55: 802–820

    Article  Google Scholar 

  5. Bejan A, Lorente S. Constructal law of design and evolution: Physics, biology, technology, and society. J Appl Phys, 2013, 113: 151301

    Article  Google Scholar 

  6. Hajmohammadi M R, Rahmani M, Campo A, et al. Optimal design of unequal heat flux elements for optimized heat transfer inside a rectangular duct. Energy, 2014, 68: 609–616

    Article  Google Scholar 

  7. Yang J, Fan A W, Liu W, et al. Optimization of shell-and-tube heat exchangers conforming to TEMA standards with designs motivated by constructal theory. Energy Convers Mgmt, 2014, 78: 468–476

    Article  Google Scholar 

  8. Yang J, Oh S R, Liu W. Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory. Int J Heat Mass Transfer, 2014, 77: 1144–1154

    Article  Google Scholar 

  9. Xie G, Zhang F, Sundén B, et al. Constructal design and thermal analysis of microchannel heat sinks with multistage bifurcations in single-phase liquid flow. Appl Thermal Engng, 2014, 62: 791–802

    Article  Google Scholar 

  10. Xie G, Asadi M, Sunden B, et al Constructal theory based geometric optimization of wavy channels in the low Reynolds number regime. Trans ASME J Electronic Pack, 2014, 136: 031013

    Article  Google Scholar 

  11. Bejan A, Dan N. Constructal trees of convective fins. Trans ASME J Heat Transfer, 1999, 121: 675–682

    Article  Google Scholar 

  12. Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Transfer, 2000, 43: 2101–2115

    Article  MATH  Google Scholar 

  13. Lorenzini G, Rocha L A O. Constructal design of Y-shaped assembly of fins. Int J Heat Mass Transfer, 2006, 49: 4552–4557

    Article  MATH  Google Scholar 

  14. Xie Z H, Chen L G, Sun F R. Constructal optimization of twice level Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci China Tech Sci, 2010, 53: 2756–2764

    Article  MATH  Google Scholar 

  15. Bello-Ochende T, Meyer J P, Bejan A. Constructal multi-scale pin-fins. Int J Heat Mass Transfer, 2010, 53: 2773–2779

    Article  MATH  Google Scholar 

  16. Zhang X, Liu D. Optimum geometric arrangement of vertical rectangular fin arrays in natural convection. Energy Convers Mgmt, 2010, 51: 2449–2456

    Article  Google Scholar 

  17. Lorenzini G, Corrêa R L. Constructal design of complex assembly of fins. Trans ASME J Heat Transfer, 2011, 133: 081902

    Article  Google Scholar 

  18. Hajmohammadi M R, Poozesh S, Hosseini R. Radiation effect on constructal design analysis of a T-Y-shaped assembly of fins. J Thermal Sci Tech, 2012, 7: 677–692

    Article  Google Scholar 

  19. Lorenzini G, Moretti S. Bejan’s constructal theory and overall performance assessment. The global optimization for heat exchanging finned modules. Thermal Sci, 2014, 18: 339–348

    Article  Google Scholar 

  20. Song Y, Asadi M, Xie G, et al. Constructal wavy-fin channels of a compact heat exchanger with heat transfer rate maximization and pressure losses minimization. Appl Thermal Engng, 2015, 75: 24–32

    Article  Google Scholar 

  21. Aziz A, Bouaziz M N. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers Mgmt, 2011, 52: 2876–2882

    Article  Google Scholar 

  22. Aziz A, Torabi M, Zhang K. Convective-radiative radial fins with convective base heating and convective-radiative tip cooling: Homogeneous and functionally graded materials. Energy Convers Mgmt, 2013, 74: 366–376

    Article  Google Scholar 

  23. Hajmohammadi M R, Poozesh S, Nourazar S S. Constructal design of multiple heat sources in a square-shaped fin. Proc I Mech E, J Process Mech Engng, 2012, 226: 324–336

    Article  Google Scholar 

  24. Hajmohammadi M R, Poozesh S, Nourazar S S, et al. Optimal architecture of heat generating pieces in a fin. J Mech Sci Tech, 2013, 27: 1143–1149

    Article  Google Scholar 

  25. Lorenzini G, Biserni C, Correa R L, et al. Constructal design of T-shaped assemblies of fins cooling a cylindrical solid body. Int J Thermal Sci, 2014, 83: 96–103

    Article  Google Scholar 

  26. Kundu B, Lee K S. Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects. Energy, 2014, 76: 733–748

    Article  Google Scholar 

  27. Guo Z, Zhu H, Liang X. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50: 2545–2556

    Article  MATH  Google Scholar 

  28. Li Z, Guo Z. Field Synergy Principle of Heat Convection Optimization. Beijing: Science Press, 2010

    Google Scholar 

  29. Chen L G. Progress in entransy theory and its applications. Chin Sci Bull, 2012, 57: 4404–4426

    Article  Google Scholar 

  30. Chen Q, Liang X, Guo Z. Entransy theory for the optimization of heat transfer-A review and update. Int J Heat Mass Transfer, 2013, 63: 65–81

    Article  Google Scholar 

  31. Cheng X, Liang X. Entransy, entransy dissipation and entransy loss for analyses of heat transfer and heat-work conversion processes. J Thermal Sci Tech, 2013, 8: 337–352

    Article  Google Scholar 

  32. Chen L G. Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle. Sci China Tech Sci, 2014, 57: 2305–2327

    Article  Google Scholar 

  33. Cheng X, Liang X. Entransy: Its physical basis, applications and limitations. Chin Sci Bull, 2014, 59: 5309–5323

    Article  Google Scholar 

  34. Chen L G, Wei S H, Sun F R. Constructal entransy dissipation minimization for “volume-point” heat conduction. J Phys D Appl Phys, 2008, 41: 195506

    Article  Google Scholar 

  35. Chen L G, Wei S H, Sun F R. Constructal entransy dissipation rate minimization of a disc. Int J Heat Mass Transfer, 2011, 54: 210–216

    Article  MATH  Google Scholar 

  36. Xie Z H, Chen L G, Sun F R. Comparative study on constructal optimizations of T-shaped fin based on entransy dissipation rate minimization and maximum thermal resistance minimization. Sci China Tech Sci, 2011, 41: 962–970

    Google Scholar 

  37. Xiao Q H, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for umbrella-shaped assembly of cylindrical fins. Sci China Tech Sci, 2011, 54: 211–219

    Article  MATH  Google Scholar 

  38. Feng H J, Chen L G, Sun F R. Constructal entransy dissipation rate minimization for leaf-like fins. Sci China Tech Sci, 2012, 55: 515–526

    Article  Google Scholar 

  39. Chen L G, Xiao Q H, Xie Z H, et al. T-shaped assembly of fins with constructal entransy dissipation rate minimization. Int Comm Heat Mass Transfer, 2012, 39: 1556–1562

    Article  Google Scholar 

  40. Chen L G, Xiao Q H, Xie Z H, et al. Constructal entransy dissipation rate minimization for tree-shaped assembly of fins. Int J Heat Mass Transfer, 2013, 67: 506–513

    Article  Google Scholar 

  41. Cheng X, Zhang Q, Xu X, et al. Optimization of fin geometry in heat convection with entransy theory. Chin Phys B, 2013, 22: 020503

    Article  Google Scholar 

  42. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull, 2014, 59: 2470–2477

    Article  Google Scholar 

  43. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for variable cross-section insulation layer of the steel rolling reheating furnace wall. Int Comm Heat Mass Transfer, 2014, 52: 26–32

    Article  Google Scholar 

  44. Jia H, Liu Z, Liu W, et al. Convective heat transfer optimization based on minimum entransy dissipation in the circular tube. Int J Heat Mass Transfer, 2014, 73: 124–129

    Article  Google Scholar 

  45. Tao Y, He Y, Liu Y, et al. Performance optimization of two-stage latent heat storage unit based on entransy theory. Int J Heat Mass Transfer, 2014, 77: 695–703

    Article  Google Scholar 

  46. Wang S, Xie X, Jiang Y. Optimization design of the large temperature lift/drop multi-stage vertical absorption temperature transformer based on entransy dissipation method. Energy, 2014, 68: 712–721

    Article  Google Scholar 

  47. Cheng X, Liang X. A comparison between the entropy generation in terms of thermal conductance and generalized thermal resistance in heat exchanger analyses. Int J Heat Mass Transfer, 2014, 76: 263–267

    Article  Google Scholar 

  48. Feng H J, Chen L G, Xie Z H, et al. Constructal entransy dissipation rate minimization for triangular heat trees at micro and nanoscales. Int J Heat Mass Transfer, 2015, 84: 848–855

    Article  Google Scholar 

  49. Feng H J, Chen L G, Xie Z H, et al. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization (in Chinese). Acta Phys Sin, 2015, 64: 034701

    Google Scholar 

  50. Chen Q, Fu R, Xu Y. Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks. Appl Energy, 2015, 139: 81–92

    Article  Google Scholar 

  51. Chen Q, Wang Y, Xu Y. A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems. Appl Energy, 2015, 139: 119–130

    Article  Google Scholar 

  52. Cheng X, Liang X. Entransy variation associated with work. Int J Heat Mass Transfer, 2015, 81: 167–170

    Article  Google Scholar 

  53. Qian X, Li Z, Li Z. Entransy and exergy analyses of airflow organization in data centers. Int J Heat Mass Transfer, 2015, 81: 252–259

    Article  Google Scholar 

  54. COMSOL Multiphysics, version 4.2, Users’ Manuals, 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Chen, L., Xie, Z. et al. Constructal entransy dissipation rate minimization for helm-shaped fin with inner heat sources. Sci. China Technol. Sci. 58, 1084–1090 (2015). https://doi.org/10.1007/s11431-015-5833-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5833-0

Keywords

Navigation